scholarly journals Impact of Headworks of River Chenab on Surrounding Vegetation and Phytodiversity Analysis

2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Muhammad Azhar Ali ◽  
Muhammad Sajjad Iqbal

This study focused on the impact assessment of the wild flora and environmental gradients encompassed by the River Chenab headworks using quantitative ecological indices. Quadrats of 1 × 1, 5 × 5 and 10 × 10 m2 sizes were used for vegetation. Considering environmental data, grazing and anthropogenic effects, soil analysis based on different physical and chemical properties was studied. The relationship between different sites and their surroundings was analyzed by Canonical and Detrended Correspondence Analysis. Similarity indices were revealed through the use of a heat map and dendrogram. As many as 130 plant species, 60 families, comprising 104 species of dicots, 17 monocots, 7 pteridophytes and 2 species of bryophytes were recorded. Different soil properties including organic matter, soil moisture and soil pH affect the vegetation on different sites. Anthropogenic activities such as construction, fishing and animal grazing were the main threats for vegetation that need to be restricted strategically to conserve surrounding vegetation.

2006 ◽  
Vol 49 (5) ◽  
pp. 785-798 ◽  
Author(s):  
Lysias Vellozo da Costa Filho ◽  
Marcos Rafael Nanni ◽  
João Batista Campos

Relationship in soil physical and chemical properties of soil, floristic and phytosociological association of semi-deciduous riparian forest of the Paranapanema River (R) and Rosana Reservoir (Re) in the Caiuá Ecological Station were evaluated. Aerial photography and satellite image were used to determine the forest cover and to locate 15 transects 50 x 30m (1500m²),which were used to sample trees with diameters at breast height (DBH)>15 cm. R contained 1487 individuals from 33 families, 64 genders and 73 species. The Shannon-weaver index (H') was 3.318. Re contained 1146 individuals from 35 families, 72 genders and 85 species and the H' was 3.755. There was a statistically significant difference (P<0.05) between R and Re environments and statistically significant correlations (p<0.05) were detected between soil physical attributes and Importance Values (IV) using the Detrended Correspondence Analysis (DCA).


2015 ◽  
Vol 63 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Karsten Schacht ◽  
Bernd Marschner

Abstract The use of treated wastewater (TWW) for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW) resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC) and soil aggregate stability (SAS). To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm) were collected for analyzing SAS and determination of selected soil chemical and physical characteristics. The mean HC values decreased at all TWW sites by 42.9% up to 50.8% compared to FW sites. The SAS was 11.3% to 32.4% lower at all TWW sites. Soil electrical conductivity (EC) and exchangeable sodium percentage (ESP) were generally higher at TWW sites. These results indicate the use of TWW for irrigation is a viable, but potentially deleterious option, as it influences soil physical and chemical properties.


2014 ◽  
Vol 70 (a1) ◽  
pp. C81-C81
Author(s):  
H. R. Sharma ◽  
J. A. Smerdon ◽  
K. Nozawa ◽  
K. M. Young ◽  
T. P. Yadav ◽  
...  

We have used quasicrystals as templates for the exploration of new epitaxial phenomena. Several interesting results have been observed in the growth on surfaces of the common Al-based quasicrystals [1]. These include pseudomorphic monolayers, quasiperiodically modulated multilayer structures, and fivefold-twinned islands with magic heights influenced by quantum size effects [1]. Here we present our recent works on the growth of various elements and molecules on a new substrate, icosahedral (i) Ag-In-Yb quasicrystal, which have resulted in various epitaxial phenomena not observed previously. The growth of Pb on the five-fold surface of i-Ag-In-Yb yields a film which possesses quasicrystalline ordering in three-dimension [2]. Using scanning tunneling microscopy (STM) and DFT calculations of adsorption energies, we find that lead atoms occupy the positions of atoms in the rhombic triacontahedral (RTH) cluster, the building block of the substrate, and thus grow in layers with different heights and adsorption energies. The adlayer–adlayer interaction is crucial for stabilizing the epitaxial quasicrystalline structure. We will also present the first example of quasicrystalline molecular layers. Pentacene adsorbs at tenfold-symmetric sites of Yb atoms around surface-bisected RTH clusters, yielding quasicrystalline order [3]. Similarly, C-60 growth on the five-fold surface of i-Al-Cu-Fe at elevated temperature produces quasicrystalline layer, where the growth is mediated by Fe atoms on the substrate surface [3]. The finding of quasicrystalline thin films of single elements and molecules opens an avenue for further investigation of the impact of the aperiodic atomic order over periodic order on the physical and chemical properties of materials.


Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Christian Henkel ◽  
Leslie K. Hunt ◽  
Yuri I. Izotov

Dwarf galaxies are by far the most numerous galaxies in the Universe, showing properties that are quite different from those of their larger and more luminous cousins. This review focuses on the physical and chemical properties of the interstellar medium of those dwarfs that are known to host significant amounts of gas and dust. The neutral and ionized gas components and the impact of the dust will be discussed, as well as first indications for the existence of active nuclei in these sources. Cosmological implications are also addressed, considering the primordial helium abundance and the similarity of local Green Pea galaxies with young, sometimes protogalactic sources in the early Universe.


2021 ◽  
Vol 12 (5) ◽  
pp. 6557-6579

The introduction of inorganic and organic pollutants into water bodies has become a serious issue globally. The waste streams released from the textile, plastic, leather, paper, pharmaceutical, and food industries introduce different natural and synthetic dyes into the aquatic system. Nanomaterials play a significant role in the photocatalytic degradation of dyes present in wastewater. Inorganic metal oxide nanoparticles have many improved physical and chemical properties and attracted much attention in photocatalytic activities. Dyes have been released in our aquatic bodies due to many anthropogenic activities and caused life-threatening problems. Various conventional methods were reported to remove dyes from water and wastewater; the photocatalytic method is one of the efficient and cost-effective. The present review article includes detailed information on photocatalysis, the potential of metal oxide and their composite materials as photocatalysts in the degradation of toxic dyes, and some common synthetic and characterization methods used for metal oxide-based nanoparticles.


Environments ◽  
2018 ◽  
Vol 5 (9) ◽  
pp. 104 ◽  
Author(s):  
Elizabeth Pillar-Little ◽  
Marcelo Guzman

Due to the adverse effect of atmospheric aerosols on public health and their ability to affect climate, extensive research has been undertaken in recent decades to understand their sources and sinks, as well as to study their physical and chemical properties. Atmospheric aerosols are important players in the Earth’s radiative budget, affecting incoming and outgoing solar radiation through absorption and scattering by direct and indirect means. While the cooling properties of pure inorganic aerosols are relatively well understood, the impact of organic aerosols on the radiative budget is unclear. Additionally, organic aerosols are transformed through chemical reactions during atmospheric transport. The resulting complex mixture of organic aerosol has variable physical and chemical properties that contribute further to the uncertainty of these species modifying the radiative budget. Correlations between oxidative processing and increased absorptivity, hygroscopicity, and cloud condensation nuclei activity have been observed, but the mechanisms behind these phenomena have remained unexplored. Herein, we review environmentally relevant heterogeneous mechanisms occurring on interfaces that contribute to the processing of aerosols. Recent laboratory studies exploring processes at the aerosol–air interface are highlighted as capable of generating the complexity observed in the environment. Furthermore, a variety of laboratory methods developed specifically to study these processes under environmentally relevant conditions are introduced. Remarkably, the heterogeneous mechanisms presented might neither be feasible in the gas phase nor in the bulk particle phase of aerosols at the fast rates enabled on interfaces. In conclusion, these surface mechanisms are important to better understand how organic aerosols are transformed in the atmosphere affecting the environment.


Biologia ◽  
2016 ◽  
Vol 71 (3) ◽  
Author(s):  
Agnieszka Józefowska ◽  
Anna Miechówka ◽  
Jan Frouz

AbstractThe impact of different geographical regions (Silesian Foothills, region 1 and Maly Beskids, region 2), and method of soil use (arable field and grassland) on the main soil properties and biological activity was studied. Earthworm biomass, density and diversity, as well as dehydrogenase activity, were analysed. Significant soil physical and chemical properties were more affected by regions, whereas the type of land use had a greater impact on the biological properties. The mean earthworm density was 213 ind. m


2014 ◽  
Vol 926-930 ◽  
pp. 4205-4208
Author(s):  
Yan Li Wu ◽  
Qing Feng Zhang ◽  
Ran Zhuo Zhang ◽  
Xiao Ming Mao ◽  
Xin Hua Sun

In the past ten years, methane has a greenhouse gas, and its concentration increases by 1% per year, while an estimated worldwide annual landfill cover soil surface from escaping methane is about 20 to 70 Mtpa. Microbial methane oxidation can be carried out about 80% of global consumption of methane, the soil microbial methane oxidation can reduce methane escaping from the soil to the atmosphere. Both in domestic and foreign ash recycling in landfill cover soil behavior has performed for many years, but there is a review of domestic and foreign literature ash, mostly looks at the aspects of physical and chemical properties and heavy metals, there is no assessment of the casing methane oxidation impact. This paper mainly urban incinerator ash as a research object, and after a landfill cover soil mined to study experimentally analyze the impact of ash added methane oxidation right.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1297 ◽  
Author(s):  
Cristian Gómez-Rodríguez ◽  
Daniel Fernández-González ◽  
Linda Viviana García-Quiñonez ◽  
Guadalupe Alan Castillo-Rodríguez ◽  
Josué Amilcar Aguilar-Martínez ◽  
...  

The chemical environment and the internal conditions of the furnaces and ladles are extremely aggressive for the refractories, so metallurgical industries demand refractory linings with greater durability and resistance to avoid unforeseen stoppages and to reduce the changes of the furnace lining. Therefore, the current work aims to evaluate the impact of the additions of ZrO2-nanoparticles (1, 3, and 5 wt. %) in magnesia-based bricks. A comparative study of the physical and chemical properties in bricks obtained using two cold pressing techniques (uniaxial and isostatic pressing) and two sintering temperatures (1550 and 1650 °C) was carried out. The microstructure and crystalline phase characteristics obtained after the heat treatments and the slag corrosion test was studied using scanning electron microscopy/electron dispersive X-ray spectroscopy (SEM/EDX) and X-ray diffraction (XRD). The results reveal that the sample with 5 wt. % of ZrO2 nanoparticles (obtained by cold isostatic pressing and sintering at 1650 °C) has the lowest porosity and greatest resistance to penetration of blast furnace slag.


Sign in / Sign up

Export Citation Format

Share Document