scholarly journals Templated quasicrystalline ordering of single elements and molecules

2014 ◽  
Vol 70 (a1) ◽  
pp. C81-C81
Author(s):  
H. R. Sharma ◽  
J. A. Smerdon ◽  
K. Nozawa ◽  
K. M. Young ◽  
T. P. Yadav ◽  
...  

We have used quasicrystals as templates for the exploration of new epitaxial phenomena. Several interesting results have been observed in the growth on surfaces of the common Al-based quasicrystals [1]. These include pseudomorphic monolayers, quasiperiodically modulated multilayer structures, and fivefold-twinned islands with magic heights influenced by quantum size effects [1]. Here we present our recent works on the growth of various elements and molecules on a new substrate, icosahedral (i) Ag-In-Yb quasicrystal, which have resulted in various epitaxial phenomena not observed previously. The growth of Pb on the five-fold surface of i-Ag-In-Yb yields a film which possesses quasicrystalline ordering in three-dimension [2]. Using scanning tunneling microscopy (STM) and DFT calculations of adsorption energies, we find that lead atoms occupy the positions of atoms in the rhombic triacontahedral (RTH) cluster, the building block of the substrate, and thus grow in layers with different heights and adsorption energies. The adlayer–adlayer interaction is crucial for stabilizing the epitaxial quasicrystalline structure. We will also present the first example of quasicrystalline molecular layers. Pentacene adsorbs at tenfold-symmetric sites of Yb atoms around surface-bisected RTH clusters, yielding quasicrystalline order [3]. Similarly, C-60 growth on the five-fold surface of i-Al-Cu-Fe at elevated temperature produces quasicrystalline layer, where the growth is mediated by Fe atoms on the substrate surface [3]. The finding of quasicrystalline thin films of single elements and molecules opens an avenue for further investigation of the impact of the aperiodic atomic order over periodic order on the physical and chemical properties of materials.

1994 ◽  
Vol 332 ◽  
Author(s):  
Bruce A. Parkinson

ABSTRACTMethods for epitaxial growth of two dimensional materials are described. The lack of interlayer bonding in these materials allows for epitaxial growth with large lattice mismatches. Growth of MoSe2 on MoS2 (a 5% mismatch) or on SnS2 (10% mismatch) can be demonstrated. Scanning tunneling microscopy (STM) revealed remarkable structures in the epilayer as a result of the large mismatches. A technique using the STM or atomic force microscope (AFM) to selectively remove single molecular layers from the surface of layered materials is also described. The combination of these two technologies may result in the ability to produce nanoscale devices exhibiting quantum size effects.


2005 ◽  
Vol 864 ◽  
Author(s):  
Steven R. Schofield ◽  
Neil J. Curson ◽  
Oliver Warschkow ◽  
Nigel A. Marks ◽  
Hugh F. Wilson ◽  
...  

AbstractThe ability to controllably position individual phosphorus dopant atoms in silicon sur-faces is a critical first step in creating nanoscale electronic devices in silicon, for example a phosphorus in silicon quantum computer. While individual P atom placement in Si(001) has been achieved, the ability to routinely position P atoms in Si for large-scale device fabrication requires a more detailed understanding of the physical and chemical processes leading to P atom incorporation. Here we present an atomic-resolution scanning tunneling microscopy study of the interaction of the P precursor molecule phosphine (PH3) with the Si(001) surface. In particular, we present the direct observation of PH3 dissociation and diffusion on Si(001) at room temperature and show that this dissociation is occasionally complete, leaving a P monomer bound to the surface. Such surface bound P monomers are important because they are the most likely entry point for P atoms to incorporate into the substrate surface at elevated temperature.


Author(s):  
Rebecca W. Keller ◽  
Carlos Bustamante ◽  
David Bear

Under ideal conditions, the Scanning Tunneling Microscope (STM) can create atomic resolution images of different kinds of samples. The STM can also be operated in a variety of non-vacuum environments. Because of its potentially high resolution and flexibility of operation, it is now being applied to image biological systems. Several groups have communicated the imaging of double and single stranded DNA.However, reproducibility is still the main problem with most STM results on biological samples. One source of irreproducibility is unreliable sample preparation techniques. Traditional deposition methods used in electron microscopy, such as glow discharge and spreading techniques, do not appear to work with STM. It seems that these techniques do not fix the biological sample strongly enough to the substrate surface. There is now evidence that there are strong forces between the STM tip and the sample and, unless the sample is strongly bound to the surface, it can be swept aside by the tip.


2015 ◽  
Vol 63 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Karsten Schacht ◽  
Bernd Marschner

Abstract The use of treated wastewater (TWW) for agricultural irrigation becomes increasingly important in water stressed regions like the Middle East for substituting fresh water (FW) resources. Due to elevated salt concentrations and organic compounds in TWW this practice has potential adverse effects on soil quality, such as the reduction of hydraulic conductivity (HC) and soil aggregate stability (SAS). To assess the impact of TWW irrigation in comparison to FW irrigation on HC, in-situ infiltration measurements using mini disk infiltrometer were deployed in four different long-term experimental orchard test sites in Israel. Topsoil samples (0-10 cm) were collected for analyzing SAS and determination of selected soil chemical and physical characteristics. The mean HC values decreased at all TWW sites by 42.9% up to 50.8% compared to FW sites. The SAS was 11.3% to 32.4% lower at all TWW sites. Soil electrical conductivity (EC) and exchangeable sodium percentage (ESP) were generally higher at TWW sites. These results indicate the use of TWW for irrigation is a viable, but potentially deleterious option, as it influences soil physical and chemical properties.


Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 11
Author(s):  
Christian Henkel ◽  
Leslie K. Hunt ◽  
Yuri I. Izotov

Dwarf galaxies are by far the most numerous galaxies in the Universe, showing properties that are quite different from those of their larger and more luminous cousins. This review focuses on the physical and chemical properties of the interstellar medium of those dwarfs that are known to host significant amounts of gas and dust. The neutral and ionized gas components and the impact of the dust will be discussed, as well as first indications for the existence of active nuclei in these sources. Cosmological implications are also addressed, considering the primordial helium abundance and the similarity of local Green Pea galaxies with young, sometimes protogalactic sources in the early Universe.


2017 ◽  
Vol 371 ◽  
pp. 160-165
Author(s):  
Vladimir Burlaka ◽  
Kai Nörthemann ◽  
Astrid Pundt

It was recently shown that phases forming in thin films undergo a coherency state change depending on the film thickness. For Nb-H thin films, the coherency state was reported to change at about 38 nm. In this study the impact of the coherency state on the phase transformation kinetics is investigated for Nb films of two different film thicknesses (25 nm and 80 nm), below and above the state change thickness. The phase transformation in thin metal-hydrogen films can be studied by surface topography analyses via scanning tunneling microscopy (STM) because of the strong local lattice expansion of the hydride precipitates. STM on Nb-H reveals fast phase transformation kinetics for the 25 nm Nb-film, and much slower kinetics for the 80 nm film. This is suggested to be related to the change in the coherency between the Nb-matrix and the hydride precipitates.


Environments ◽  
2018 ◽  
Vol 5 (9) ◽  
pp. 104 ◽  
Author(s):  
Elizabeth Pillar-Little ◽  
Marcelo Guzman

Due to the adverse effect of atmospheric aerosols on public health and their ability to affect climate, extensive research has been undertaken in recent decades to understand their sources and sinks, as well as to study their physical and chemical properties. Atmospheric aerosols are important players in the Earth’s radiative budget, affecting incoming and outgoing solar radiation through absorption and scattering by direct and indirect means. While the cooling properties of pure inorganic aerosols are relatively well understood, the impact of organic aerosols on the radiative budget is unclear. Additionally, organic aerosols are transformed through chemical reactions during atmospheric transport. The resulting complex mixture of organic aerosol has variable physical and chemical properties that contribute further to the uncertainty of these species modifying the radiative budget. Correlations between oxidative processing and increased absorptivity, hygroscopicity, and cloud condensation nuclei activity have been observed, but the mechanisms behind these phenomena have remained unexplored. Herein, we review environmentally relevant heterogeneous mechanisms occurring on interfaces that contribute to the processing of aerosols. Recent laboratory studies exploring processes at the aerosol–air interface are highlighted as capable of generating the complexity observed in the environment. Furthermore, a variety of laboratory methods developed specifically to study these processes under environmentally relevant conditions are introduced. Remarkably, the heterogeneous mechanisms presented might neither be feasible in the gas phase nor in the bulk particle phase of aerosols at the fast rates enabled on interfaces. In conclusion, these surface mechanisms are important to better understand how organic aerosols are transformed in the atmosphere affecting the environment.


Biologia ◽  
2016 ◽  
Vol 71 (3) ◽  
Author(s):  
Agnieszka Józefowska ◽  
Anna Miechówka ◽  
Jan Frouz

AbstractThe impact of different geographical regions (Silesian Foothills, region 1 and Maly Beskids, region 2), and method of soil use (arable field and grassland) on the main soil properties and biological activity was studied. Earthworm biomass, density and diversity, as well as dehydrogenase activity, were analysed. Significant soil physical and chemical properties were more affected by regions, whereas the type of land use had a greater impact on the biological properties. The mean earthworm density was 213 ind. m


Sign in / Sign up

Export Citation Format

Share Document