scholarly journals Estimation of Energy Savings Potential in Higher Education Buildings Supported by Energy Performance Benchmarking: A Case Study

Environments ◽  
2018 ◽  
Vol 5 (8) ◽  
pp. 85 ◽  
Author(s):  
Hermano Bernardo ◽  
Filipe Oliveira

This paper presents results of work developed in the field of building energy benchmarking applied to the building stock of the Polytechnic Institute of Leiria, Portugal, based on a thorough energy performance characterisation of each of its buildings. To address the benchmarking of the case study buildings, an energy efficiency ranking system was applied. Following an energy audit of each building, they were grouped in different typologies according to the main end-use activities developed: Pedagogic buildings, canteens, residential buildings and office buildings. Then, an energy usage indicator was used to establish a metric to rank the buildings of each typology according to their energy efficiency. The energy savings potential was also estimated, based on the reference building energy usage indicator for each typology, and considering two different scenarios, yielding potential savings between 10% and 34% in final energy consumption.

Author(s):  
Filomena Pietrapertosa ◽  
Marco Tancredi ◽  
Michele Giordano ◽  
Carmelina Cosmi ◽  
Monica Salvia

The European Union 2050 climate neutrality goal and the climate crisis require coordinated efforts to reduce energy consumption in all sectors, and mainly in buildings greatly affected by the increasing temperature, with relevant CO2 emissions due to inefficient end-use technologies. Moreover, the old building stock of most countries requires suited policies to support renovation programs aimed at improving energy performances and optimize energy uses. A toolbox was developed in the framework of the PrioritEE project to provide policy makers and technicians with a wide set of tools to support energy efficiency in Municipal Public Buildings. The toolbox, available for free, was tested in the partners’ communities, proving its effectiveness. The paper illustrates its application to the Potenza Municipality case study in which the online calculator DSTool (the core instrument of the toolbox) was utilized to select and prioritize the energy efficiency interventions in public buildings implementable in a three-year action plan in terms of costs, energy savings, CO2 emissions’ reduction and return on investments. The results highlight that improvements in the building envelopes (walls and roofs), heating and lighting and photovoltaic systems allow reducing CO2 emission approximately 644 t/year and saving about 2050 MWh/year with a total three-year investment of 1,728,823 EUR.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1049
Author(s):  
Zhang Deng ◽  
Yixing Chen ◽  
Xiao Pan ◽  
Zhiwen Peng ◽  
Jingjing Yang

Urban building energy modeling (UBEM) is arousing interest in building energy modeling, which requires a large building dataset as an input. Building use is a critical parameter to infer archetype buildings for UBEM. This paper presented a case study to determine building use for city-scale buildings by integrating the Geographic Information System (GIS) based point-of-interest (POI) and community boundary datasets. A total of 68,966 building footprints, 281,767 POI data, and 3367 community boundaries were collected for Changsha, China. The primary building use was determined when a building was inside a community boundary (i.e., hospital or residential boundary) or the building contained POI data with main attributes (i.e., hotel or office building). Clustering analysis was used to divide buildings into sub-types for better energy performance evaluation. The method successfully identified building uses for 47,428 buildings among 68,966 building footprints, including 34,401 residential buildings, 1039 office buildings, 141 shopping malls, and 932 hotels. A validation process was carried out for 7895 buildings in the downtown area, which showed an overall accuracy rate of 86%. A UBEM case study for 243 office buildings in the downtown area was developed with the information identified from the POI and community boundary datasets. The proposed building use determination method can be easily applied to other cities. We will integrate the historical aerial imagery to determine the year of construction for a large scale of buildings in the future.


2021 ◽  
Vol 13 (20) ◽  
pp. 11554
Author(s):  
Fahad Haneef ◽  
Giovanni Pernigotto ◽  
Andrea Gasparella ◽  
Jérôme Henri Kämpf

Nearly-zero energy buildings are now a standard for new constructions. However, the real challenge for a decarbonized society relies in the renovation of the existing building stock, selecting energy efficiency measures considering not only the energy performance but also the economic and sustainability ones. Even if the literature is full of examples coupling building energy simulation with multi-objective optimization for the identification of the best measures, the adoption of such approaches is still limited for district and urban scale simulation, often because of lack of complete data inputs and high computational requirements. In this research, a new methodology is proposed, combining the detailed geometric characterization of urban simulation tools with the simplification provided by “building archetype” modeling, in order to ensure the development of robust models for the multi-objective optimization of retrofit interventions at district scale. Using CitySim as an urban scale energy modeling tool, a residential district built in the 1990s in Bolzano, Italy, was studied. Different sets of renovation measures for the building envelope and three objectives —i.e., energy, economic and sustainability performances, were compared. Despite energy savings from 29 to 46%, energy efficiency measures applied just to the building envelope were found insufficient to meet the carbon neutrality goals without interventions to the system, in particular considering mechanical ventilation with heat recovery. Furthermore, public subsidization has been revealed to be necessary, since none of the proposed measures is able to pay back the initial investment for this case study.


2019 ◽  
Vol 14 (2) ◽  
pp. 109-136
Author(s):  
Chaitali Basu ◽  
Virendra Kumar Paul ◽  
M.G. Matt Syal

The energy performance of an existing building is the amount of energy consumed to meet various needs associated with the standardized use of a building and is reflected in one or more indicators known as Building Energy Performance Indicators (EnPIs). These indicators are distributed amongst six main factors influencing energy consumption: climate, building envelope, building services and energy systems, building operation and maintenance, occupants' activities and behaviour, and indoor environmental quality. Any improvement made to either the existing structure or the physical and operational upgrade of a building system that enhances energy performance is considered an energy efficiency retrofit. The main goal of this research is to support the implementation of multifamily residential building energy retrofits through expert knowledge consensus on EnPIs for energy efficiency retrofit planning. The research methodology consists of a comprehensive literature review which has identified 35 EnPIs for assessing performance of existing residential buildings, followed by a ranking questionnaire survey of experts in the built-environment to arrive at a priority listing of indicators based on mean rank. This was followed by concordance analysis and measure of standard deviation. A total of 280 experts were contacted globally for the survey, and 106 completed responses were received resulting in a 37.85% response rate. The respondents were divided into two groups for analysis: academician/researchers and industry practitioners. The primary outcome of the research is a priority listing of EnPIs based on the quantitative data from the knowledge-base of experts from these two groups. It is the outcome of their perceptions of retrofitting factors and corresponding indicators. A retrofit strategy consists of five phases for retrofitting planning in which the second phase comprises an energy audit and performance assessment and diagnostics. This research substantiates the performance assessment process through the identification of EnPIs.


2017 ◽  
Vol 7 (2) ◽  
pp. 185-198 ◽  
Author(s):  
Kamalesh Panthi ◽  
Kanchan Das ◽  
Tarek Abdel-Salam

Purpose Vacation rental homes, in general, have different energy usage characteristics than traditional residential homes mainly because of the occupancy pattern that changes on a weekly basis. These homes, predominantly larger in size, offer a greater scope for energy savings also because of the wasteful habits of their seasonal occupants. The purpose of this paper is to investigate the causes of energy inefficiencies prevalent in these homes so that appropriate retrofit choices can be offered to homeowners. Design/methodology/approach This research presents a case study of a vacation rental home whose energy consumption was investigated in depth and energy inefficiencies identified through modeling using energy modeling software, eQUEST. Simulations were performed to identify viable retrofit scenarios. Findings While improvement in the building envelope such as providing shades/overhangs on the windows, reducing infiltration and increasing insulation of the exterior wall did not show promising results for savings on energy cost, other improvements such as use of highly efficient lamps, tank-less water heater system and occupancy sensors showed viable investment options with shorter payback periods. It was also found that energy use intensity of sampled houses was about half of the average of US residential buildings, which could primarily be attributed to the seasonal nature of occupancy of these houses. Originality/value There is a dearth of literature pertaining to energy efficiency-related retrofits of coastal vacation homes. This research fills that gap to some extent by addressing this issue with an ultimate aim of assisting homeowners in retrofit decision-making.


2021 ◽  
Vol 312 ◽  
pp. 06003
Author(s):  
Franz Bianco Mauthe Degerfeld ◽  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Vincenzo Corrado

The EN ISO 52016-1 standard presents a new simplified dynamic calculation procedure, whose aim is to provide an accurate energy performance assessment without excessively increasing the number of data required. The Italian National Annex to EN ISO 52016-1, currently under development, provides some improvements to the hourly calculation method; despite many works can be found in literature on the hourly model of EN ISO 52016-1, the National Annexes application has not been sufficiently analysed yet. The aim of the present work is to assess the main improvements introduced by the Italian National Annex and to compare the main results, in terms of energy need for space heating and cooling. To this purpose, an existing building representative of the Italian office building stock in Northern Italy was selected as a case study. The energy simulations were carried out considering both continuous and reduced operation of the HVAC systems. The options specified in the Italian National Annex were firstly applied one by one, and then all together. The variation of the energy need compared to the international base procedure is finally quantified. For the premises and the scope above discussed, the present work is intended to enhance the standardisation activity towards the adoption of more accurate and trustable calculation methods of the building energy performance.


2016 ◽  
Vol 2016 ◽  
pp. 1-180
Author(s):  
Katerina Petrushevska

AIM: This research examines the important issue of energy efficient improvements to the existing building stock through building envelope upgrade. To facilitate this, the energy performance characteristics of the existing building stock were identified with a view to establishing an existing building stock type, where building envelope upgrades can contribute to a higher level of energy efficiency improvements. The literature review along with the selected building precedents was used to establish the best current practice for building envelope upgrades.MATERIAL AND METHODS: Established building precedents and identified best practice for building envelope upgrade, a high rise block of flats was identified and used as a case study, with the current and predicted, following building envelope upgrade, energy performance of the building calculated. This has allowed us to identify the possible energy efficiency improvements for this type of building following the building envelope upgrade. RESULTS: In the projected case, the building with energy class - "D" become class "B". In addition, increased quality of the living room in the attic was enabled. It was possible to obtain a decrease of the heating energy from 130.76 kWh/m²a to 37.73 kWh/m²a or to jump in the class "B" of energetic passport.CONCLUSION: This research contributes to the local implementation of the global agenda for sustainable development, design and construction, and it demonstrates the possible way and level of energy efficiency improvements to the least efficient building stock through existing building envelope upgrade.


2011 ◽  
Vol 43 (12) ◽  
pp. 3400-3409 ◽  
Author(s):  
Elena G. Dascalaki ◽  
Kalliopi G. Droutsa ◽  
Constantinos A. Balaras ◽  
Simon Kontoyiannidis

2010 ◽  
Vol 16 (4) ◽  
pp. 567-576 ◽  
Author(s):  
Jorge S. Carlos ◽  
Helena Corvacho

A study on thermal retrofit of Portuguese elementary school buildings is presented. The type of school under analysis is one adopted by a large construction campaign that began in the 1940's. This building stock has a very poor thermal performance and their retrofit was evaluated starting with a case study of a school in the central region of Portugal, where some experimental measures were performed and a calculation method was applied for the heating energy consumption estimation. A solution for the thermal retrofit of the school building external envelope was optimized and the effect on heating energy consumption was evaluated, using ECOTECT, resulting in a reduction of 52% of heating energy needs. The national impact of the thermal retrofit of the whole building stock was characterised in terms of energy savings. Finally, the pre‐heating of the ventilation air was also tested as a complementary measure and its effect evaluated. The solution tested may provide up to 1000 kWh/year of extra heat gains by pre‐heating the ventilation air. It must be underlined though that the performance of these systems is dependent on the thermal properties of their components so higher reductions can be achieved with the improvement of these properties. Santrauka Straipsnyje pateikiami Portugalijos pradines mokyklos šiluminio atnaujinimo tyrimai. Analizuojamos mokyklos tipas yra vienas iš taikytu po 1940 metu prasidejusioje plačioje statybos kampanijoje. Šios pastatu grupes šilumines charakteristikos yra labai prastos. Ju atnaujinimo vertinimas buvo pradetas nuo centrineje Portugalijoje esančios mokyklos, kurioje buvo igyvendintos kai kurios eksperimentines priemones, ir energijos sanaudoms nustatyti pritaikytas skaičiavimo metodas. Pastato išoriniu atitvaru šiluminio atnaujinimo sprendimas buvo optimizuotas ir jo itaka šilumines energijos sanaudoms nustatyta naudojant ECOTECT. Šilumines energijos poreikis sumažejo 52 %. Iš viso pastatu fondo šiluminio atnaujinimo itaka nacionaliniu mastu vertinta sutaupytos energijos kiekiu. Pabaigoje kaip papildoma priemone buvo išbandytas pirminis vedinamo oro pašildymas, nustatytas jo naudingumas. Išbandytasis pirminis vedinamo oro pašildymas gali suteikti iki 1000 kWh/metus papildomo išsiskiriančio šilumos kiekio. Pabrežtina, kad nors šiu sistemu veikimo charakteristikos priklauso nuo ju komponentu šiluminiu savybiu, gerinant šias savybes galima daugiau sumažinti energijos sanaudu.


2020 ◽  
Vol 57 (6) ◽  
pp. 40-52
Author(s):  
M. Upitis ◽  
I. Amolina ◽  
I. Geipele ◽  
N. Zeltins

AbstractDirective (EU) 2018/2002 of the European Parliament and of the Council amending Directive 2012/27/EU on energy efficiency sets a target of 32.5 % energy efficiency to be achieved by 2030, with a possible upward revision in 2023. The directive also stipulates that the obligation to achieve annual energy savings must continue to be met after 2020. In addition, a revised directive on the energy performance of buildings was adopted in May 2018. It includes measures to speed up the renovation of buildings and the transition to more energy-efficient systems, as well as to improve the energy efficiency of new buildings, thus using smart energy management systems [1].Buildings consume the most energy and have the greatest energy saving potential. They are therefore crucial to achieving the European Union’s energy saving targets. The EU allocated around 14 billion EUR to improve the energy efficiency of buildings in the period of 2014–2020, of which 4.6 billion EUR was intended for residential buildings. In addition, the Member States have earmarked 5.4 billion EUR of public co-financing for the improvement of all types of buildings, of which around 2 billion EUR is allocated to residential buildings.Multi-apartment residential buildings in Latvia are in a technically unsatisfactory condition. In Latvia, the service life of multi-apartment residential buildings has been artificially extended. In addition, there is also the problem of reduced construction quality. Housing problems affect all layers of society, but they are most acute for low- and middle-income people.The aim of the research is to study, using the co-financing of the European Union Structural Funds, the activities performed during the renovation process of multi-apartment residential buildings in Latvia and to identify the shortcomings.


Sign in / Sign up

Export Citation Format

Share Document