PERFORMANCE INDICATORS FOR ENERGY EFFICIENCY RETROFITTING IN MULTIFAMILY RESIDENTIAL BUILDINGS

2019 ◽  
Vol 14 (2) ◽  
pp. 109-136
Author(s):  
Chaitali Basu ◽  
Virendra Kumar Paul ◽  
M.G. Matt Syal

The energy performance of an existing building is the amount of energy consumed to meet various needs associated with the standardized use of a building and is reflected in one or more indicators known as Building Energy Performance Indicators (EnPIs). These indicators are distributed amongst six main factors influencing energy consumption: climate, building envelope, building services and energy systems, building operation and maintenance, occupants' activities and behaviour, and indoor environmental quality. Any improvement made to either the existing structure or the physical and operational upgrade of a building system that enhances energy performance is considered an energy efficiency retrofit. The main goal of this research is to support the implementation of multifamily residential building energy retrofits through expert knowledge consensus on EnPIs for energy efficiency retrofit planning. The research methodology consists of a comprehensive literature review which has identified 35 EnPIs for assessing performance of existing residential buildings, followed by a ranking questionnaire survey of experts in the built-environment to arrive at a priority listing of indicators based on mean rank. This was followed by concordance analysis and measure of standard deviation. A total of 280 experts were contacted globally for the survey, and 106 completed responses were received resulting in a 37.85% response rate. The respondents were divided into two groups for analysis: academician/researchers and industry practitioners. The primary outcome of the research is a priority listing of EnPIs based on the quantitative data from the knowledge-base of experts from these two groups. It is the outcome of their perceptions of retrofitting factors and corresponding indicators. A retrofit strategy consists of five phases for retrofitting planning in which the second phase comprises an energy audit and performance assessment and diagnostics. This research substantiates the performance assessment process through the identification of EnPIs.

2021 ◽  
Vol 13 (20) ◽  
pp. 11554
Author(s):  
Fahad Haneef ◽  
Giovanni Pernigotto ◽  
Andrea Gasparella ◽  
Jérôme Henri Kämpf

Nearly-zero energy buildings are now a standard for new constructions. However, the real challenge for a decarbonized society relies in the renovation of the existing building stock, selecting energy efficiency measures considering not only the energy performance but also the economic and sustainability ones. Even if the literature is full of examples coupling building energy simulation with multi-objective optimization for the identification of the best measures, the adoption of such approaches is still limited for district and urban scale simulation, often because of lack of complete data inputs and high computational requirements. In this research, a new methodology is proposed, combining the detailed geometric characterization of urban simulation tools with the simplification provided by “building archetype” modeling, in order to ensure the development of robust models for the multi-objective optimization of retrofit interventions at district scale. Using CitySim as an urban scale energy modeling tool, a residential district built in the 1990s in Bolzano, Italy, was studied. Different sets of renovation measures for the building envelope and three objectives —i.e., energy, economic and sustainability performances, were compared. Despite energy savings from 29 to 46%, energy efficiency measures applied just to the building envelope were found insufficient to meet the carbon neutrality goals without interventions to the system, in particular considering mechanical ventilation with heat recovery. Furthermore, public subsidization has been revealed to be necessary, since none of the proposed measures is able to pay back the initial investment for this case study.


2021 ◽  
Vol 6 ◽  
Author(s):  
Mario Frei ◽  
Chirag Deb ◽  
Zoltan Nagy ◽  
Illias Hischier ◽  
Arno Schlueter

In the building and construction sector, the mismatch between predicted and measured energy consumption is a well-known phenomenon called the performance gap. A promising approach to reduce the performance gap and thus improve the current building energy performance assessments are methods based on in-situ measurements. In this work, we present a building assessment process based on a novel, easily deployable wireless sensor kit. The basic sensor kit for building energy assessment presented in this study consists of a heating energy input node, several indoor temperature nodes, an outdoor temperature node, and a heat flux sensor. Specifically, the study outlines a medium-scale deployment of the sensor kit in eight occupied single-family homes in Switzerland and identifies the benefits of such an approach in the estimation of the overall heat loss coefficient and U-values. The findings of this study suggest that such sensor kits could be effectively used for rapid building performance assessment, and the paper concludes by outlining the potential benefits and implementation challenges of a larger scale study.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
José Antonio Álvarez ◽  
Juan Ramón Rabuñal ◽  
Dolores García-Vidaurrázaga ◽  
Alberto Alvarellos ◽  
Alejandro Pazos

Increasing the energy efficiency of buildings is a strategic objective in the European Union, and it is the main reason why numerous studies have been carried out to evaluate and reduce energy consumption in the residential sector. The process of evaluation and qualification of the energy efficiency in existing buildings should contain an analysis of the thermal behavior of the building envelope. To determine this thermal behavior and its representative parameters, we usually have to use destructive auscultation techniques in order to determine the composition of the different layers of the envelope. In this work, we present a nondestructive, fast, and cheap technique based on artificial neural network (ANN) models that predict the energy performance of a house, given some of its characteristics. The models were created using a dataset of buildings of different typologies and uses, located in the northern area of Spain. In this dataset, the models are able to predict the U-opaque value of a building with a correlation coefficient of 0.967 with the real U-opaque measured value for the same building.


2020 ◽  
pp. 014459872097514
Author(s):  
AbdulRahman S Almushaikah ◽  
Radwan A Almasri

Lately, with the growth in energy consumption worldwide to support global efforts to improve the climate, developing nations have to take significant measures. Kingdom of Saudi Arabia (KSA) implemented meaningful policy actions towards promoting energy efficiency (EE) in several sectors, especially in the building sector, to be more sustainable. In this paper, various EE measures and solar energy prospects are investigated for the residential sector, in two locations in the middle region of the KSA. An energy performance analysis of pre-existing residential buildings with an overall design is performed using simulation programs. However, installing EE measures in the building envelope is important to achieve an efficient sector regarding its energy consumption. The findings showed that applying EE measures for the building envelope, walls, roof, and windows should be considered first that makes the energy conservation possible. In Riyadh, EE measures are responsible for reducing energy consumption by 27% for walls, 14% for roof, and 6% for window, and by 29%, 13%, and 6% for walls, roof, and windows, respectively, for Qassim. However, the most impactful EE solution was selecting a heating, ventilation, and air conditioning (HVAC) system with a high energy efficiency rate (EER), which can minimize the energy consumption by 33% and 32% for Riyadh and Qassim, respectively. The study's feasibility showed that the number of years needed to offset the initial investment for a proposed roof PV system exceeds the project's life, if the energy produced is exported to the grid at the official export tariff of 0.019 $/kWh. However, the simple payback time was 13.42 years if the energy produced is exported to the grid at a rate of 0.048 $/kWh, reflecting the project's economic feasibility.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8223
Author(s):  
Zhixing Li ◽  
Mimi Tian ◽  
Yafei Zhao ◽  
Zhao Zhang ◽  
Yuxi Ying

Building energy waste has become one of the major challenges confronting the world today, so specifications and targets for building energy efficiency have been put forward in countries around the world in recent years. The schematic design stage matters a lot for building energy efficiency, while most architects nowadays are less likely to make energy efficiency design decisions in this stage due to the lack of necessary means and methods for analysis. An integrated multi-objective multivariate framework for optimization analysis is proposed for the schematic design stage in the paper. Here, the design parameters of the building morphology and the design parameters of the building envelope are integrated for analysis, and an integrated performance prediction model is established for low-rise and medium-rise residential buildings. Then, a comparison of the performance indicators of low-rise and medium-rise residential buildings under five typical urban climatic conditions is carried out, and the change patterns of the lighting environment, thermal environment, building energy demand, and life cycle cost of residential buildings in each city under different morphological parameters and design parameters of the building envelope are summarized. Specific analysis methods and practical tools are provided in the study for architectural design to ensure thermal comfort, lighting comfort, low energy consumption, and low life-cycle cost requirement, and this design method can inspire and guide the climate adaptation analysis and design process of low-rise and medium-rise residential buildings in China, improve architects’ perception of energy-saving design principles of low-rise and medium-rise residential buildings on the ontological level, as well as provide them with a method to follow and a case to follow in the actual design process.


2020 ◽  
Vol 12 (9) ◽  
pp. 3566
Author(s):  
Byung Chang Kwag ◽  
Sanghee Han ◽  
Gil Tae Kim ◽  
Beobjeon Kim ◽  
Jong Yeob Kim

The purposes of this study were to overview the building-energy policy and regulations in South Korea to achieve energy-efficient multifamily residential buildings and analyze the effects of strengthening the building design requirements on their energy performances. The building energy demand intensity showed a linear relationship with the area-weighted average U-values of the building envelope. However, improving the thermal properties of the building envelope was limited to reducing the building-energy demand intensity. In this study, the effects of various energy conservation measures (ECMs) on the building-energy performance were compared. Among the various ECMs, improving the boiler efficiency was found to be the most efficient measure for reducing the building-energy consumption in comparison to other ECMs, whereas the building envelope showed the least impact, because the current U-values are low. However, in terms of the primary energy consumption, the most efficient ECM was the lighting power density because of the different energy sources used by various ECMs and the different conversion factors used to calculate the primary energy consumption based on the source type. This study showed a direction for updating the building-energy policy and regulations, as well as the potential of implementing ECMs, to improve the energy performances of Korean multifamily residential buildings.


2016 ◽  
Vol 26 (3) ◽  
pp. 375-391 ◽  
Author(s):  
Suzaini M. Zaid ◽  
Peter Graham

Malaysia’s electricity consumption is increasing exponentially as it gears towards becoming a developed nation by year 2020. This paper is aimed at policy development in terms of energy efficiency and building design as Malaysia has yet to establish any mandatory energy efficiency or energy performance building code. The focus on public low-cost housing projects is important as it is administered by government agencies and provides possible streamlining of proposed energy policies for the housing sector. Presented in this paper are findings from fieldwork conducted to investigate the energy performance and green house gas (GHG) emissions from the building operation of two public low-cost housing projects in Kuala Lumpur. The baseline calculations use UNEP–SBCI’s Common Carbon Metric tool to provide project-specific calculations of energy and emissions intensity with its bottom-up approach, while presenting a national-scale projection using its top-down approach. Findings from bottom-up analysis suggest that Malaysian public low-cost housing households consume more than benchmarks set by the World Energy Council and the International Energy Agency, in terms of Building Energy Index (BEI) of kwh/m2/year. This is a reflection of the absence of building energy efficiency legislation in Malaysia, both for residential and non-residential buildings. The importance of this research lies in its focus on a developing country experiencing rapid urbanisation and climate change effects.


2021 ◽  
Vol 899 (1) ◽  
pp. 012009
Author(s):  
A C Karanafti ◽  
T G Theodosiou

Abstract Improving the energy efficiency of residential buildings is of outmost importance for reducing their environmental footprint. Recent studies demonstrate that a highly insulated building envelope may burden the building’s performance during the cooling period, especially in regions with hot summers. In this study, the energy performance of a residential building in different Mediterranean regions (Jordan, Greece, Iraq, Egypt, Syria, Morocco, Cyprus, Saudi Arabia, Libya, and Spain) is investigated. Two thermal transmittance values are applied to the building shell, a scenario with a very low one and a scenario with a higher one, to examine under which conditions the cooling performance is improved. A dynamic insulation configuration is also implemented, and its operation is studied for the cooling period of each city. It is concluded that in Southern European and Northern African regions building envelopes with lower thermal resistances perform better, while in even Southern regions an increased thermal resistance may prevent the heat from entering the building more effectively. With the switching insulation system, a great reduction in the cooling demands was reported, which reached up to 50% in Spain, and it was shown that in the southern regions the configuration’s operation should be customized to the ambient conditions to optimize its performance.


2010 ◽  
Vol 171-172 ◽  
pp. 441-444
Author(s):  
Wei Cai ◽  
Zhao Hui Wu ◽  
Huang Wang ◽  
Xiao Man Du

Built environment is determined by outside climate condition. There are a lot of important factors that influence building energy consumption such as building shape coefficient, insulation work of building envelope, covered area, and the area ratio of window to wall. In order to determine how building energy efficiency works in different climate zones, the variation rule of some aggregative indicators and building energy efficiency rates were analyzed by dynamic simulation. The results show that energy conservation potential which is brought by the decrease of builidng shape coefficient is the largest in hot summer and cold winter zone such as Shanghai, and the effect is mainly brought by insulation measures added to exterior walls.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 405
Author(s):  
Amy Huynh ◽  
Regina Dias Barkokebas ◽  
Mohamed Al-Hussein ◽  
Carlos Cruz-Noguez ◽  
Yuxiang Chen

Due to the energy and environmental impacts attributed to the operational phase of the building sector, efforts have been made to improve building energy performance through the implementation of restrictive energy requirements by regulatory bodies. In this context, the primary objective of this paper is to investigate and compare regulations that govern the building envelope energy performance of new residential buildings in cold-climate regions, primarily in Canada, Finland, Iceland, Norway, Sweden, China, and Russia. The aim is to identify similarities and dissimilarities among the energy regulations of these countries, as well as potentials for development of more effective building codes. This study verifies that the investigated energy requirements diverge considerably—for instance, the required thermal resistance per unit area of above-grade exterior walls in Sweden is almost two times that of a similar climate zone in Canada. Based on the comparisons and case analyses, recommendations for energy requirements pertinent to building envelope of new residential buildings in cold-climate regions are proposed.


Sign in / Sign up

Export Citation Format

Share Document