scholarly journals Exploring the Relationships between Key Ecological Indicators to Improve Natural Conservation Planning at Different Scales

Forests ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 32 ◽  
Author(s):  
Lu Zhang ◽  
Zhiyun Ouyang

Biodiversity, regulating ecosystem services (RES), and vegetation productivity are key indicators to instruct natural conservation planning. Decision makers often hope that ecosystems can be protected by focusing on certain key indicators, which requires an understanding of the relationships between the indicators. Using individual case studies, many have argued that these indicators commonly have significant relationships. However, these relationships at different spatial scales are unclear. Therefore, in this study, biodiversity and ecosystem services are modelled by the ecological niche model, the universal soil loss equation, and the equation of water balance in two study areas at different scales. The influence of vegetation productivity on the spatial pattern of other ecological indicators in the two areas is examined by a spatial lag model. The contributions of the driving factors on biodiversity distribution at both scales are identified by a boosted regression tree (BRT) model. The results showed that at the fine scale, the spatial correlations were strongest for species richness, especially mammalian species richness, and water retention. However, biodiversity had no significant relationship with vegetation productivity. In contrast, at a coarser scale, the correlation was stronger between plant diversity and regulating ecosystem services. In addition, plant diversity was significantly correlated with vegetation productivity. These differences between scales were controlled by various explanatory variables. At the fine scale, biophysical and climatic factors had the strongest effects on biodiversity distribution, while Net Primary Productivity (NPP) and ecoregion also had relatively high influences on biodiversity at the coarse scale. This demonstrates the critical importance of spatial scale in selecting conservation indicators. We suggest that rare mammalian species richness or flagship mammal species are suitable as conservation surrogates in fine-scale conservation planning. However, at a coarser scale, selecting vegetation patches with more rare plant species and high productivity for each ecoregion is a workable alternative method for conservation planning.

PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255082
Author(s):  
Avantika Thapa ◽  
Pujan Kumar Pradhan ◽  
Bheem Dutt Joshi ◽  
Tanoy Mukherjee ◽  
Mukesh Thakur ◽  
...  

The present study aims to explore the mammalian diversity of Darjeeling district using camera traps along with questionnaire survey in protected area (PA) and non- protected area (Non-PA). We also attempted to understand the influence of habitat variables on mammalian species richness using the generalized linear mixed models (GLMM). A total of 30 mammal species were recorded of which 21 species were detected through camera trapping with the most abundant records of barking deer (Muntiacus muntjak) and least of the elusive Chinese pangolin (Manis pentadactyla) and red panda (Ailurus fulgens). Additionally, melanistic forms of four mammals were also recorded. The mammalian species richness, their capture rate and naïve occupancy did not differ significantly among the PA and Non-PA. The GLMM revealed that the proportions of oak and bamboo in the forest, percentage canopy cover and camera trap operational days (wAICc = 0.145, wBIC = 0.603) were significant predictors of species richness in the study. We suggest Non-PA forest of Darjeeling should be given equal conservation importance as to the PA. Landscape based conservation planning will be imperative for achieving long term conservation goals in the study area.


2019 ◽  
Author(s):  
E. Louise Loudermilk ◽  
Lee Dyer ◽  
Scott Pokswinski ◽  
Andrew T. Hudak ◽  
Benjamin Hornsby ◽  
...  

AbstractFire is a global process that drives patterns of biodiversity. In frequently burned fire-dependent ecosystems, surface fire regimes allow for the coexistence of high plant diversity at fine-scales even where soils are uniform. The mechanisms on how fire impacts groundcover community dynamics are however, poorly understood. Because fire can act as a stochastic agent of mortality, we hypothesized that a neutral mechanism might be responsible for maintaining plant diversity. We used the demographic parameters of the Unified Neutral Theory of Biodiversity (UNTB) as a foundation to model groundcover species richness, using a southeastern U.S. pine woodland as an example. We followed the fate of over 7,000 individuals of 123 plant species for four years and two prescribed burns in frequently burned Pinus palustris sites in NW FL, USA. Using these empirical data and UNTB-based assumptions, we developed two parsimonious autonomous agent models, which were distinct by spatially explicit and implicit local recruitment processes. Using a parameter sensitivity test, we examined how empirical estimates, input species frequency distributions, and community size affected output species richness. We found that dispersal limitation was the most influential parameter, followed by mortality and birth, and that these parameters varied based on scale of the frequency distributions. Overall, these nominal parameters were useful for simulating fine-scale groundcover communities, although further empirical analysis of richness patterns, particularly related to fine-scale burn severity is needed. This modeling framework can be utilized to examine our premise that localized groundcover assemblages are neutral communities at high fire frequencies, as well as examine the extent to which niche-based dynamics determine community dynamics when fire frequency is altered and spatial fire intensity patterns differ.


2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Analice Calaça ◽  
Marluci Fachi ◽  
Diego Afonso Silva ◽  
Seixas Rezende Oliveira ◽  
Fabiano Rodrigues de Melo

Abstract: Habitat fragmentation is one of the principal causes of the decline of species worldwide, and the Brazilian Atlantic Forest and Cerrado savanna biomes are among the most severely affected by this process. While highly fragmented, remnants of Atlantic Forest can still be found within the Cerrado domain of southern Goiás, where previous studies have revealed high levels of biodiversity. To inventory the mammalian species that occur in the region, two fragments of semideciduous Atlantic Forest were sampled between 2011 and 2016, using line transect surveys and camera trapping. A total of 1016 records were obtained of 30 mammal species, of which eleven are under some threat of extinction. The species richness recorded on this study was similar to or higher than the values reported from other areas of Goiás, which reinforces the importance of the maintenance of these remnants, located in private properties, for the conservation of the region's mammals.


Bothalia ◽  
2016 ◽  
Vol 46 (2) ◽  
Author(s):  
Lyle E. Ground ◽  
Rob Slotow ◽  
Jayanti Ray-Mukherjee

Background: Systematic conservation planning (SCP) is a key tool in conservation prioritisation. It has recently been applied within the eThekwini Municipal Area (EMA), South Africa, a rapidly developing metro located within a biodiversity hotspot. Most vegetation types within this region are threatened, yet have received limited scientific attention. Objectives: To assess forb biodiversity of coastal and near-coastal grasslands and contextualise potential drivers of species variation to the EMA context. Method: We quantified forb species richness, frequency and species composition, determined the variation of these amongst plots and sites, and assessed which variables were responsible for this variation. Results: Site forb species richness ranged from 33 to 84 species per site, with the most frequent species differing across the seven sites. Beta diversity was higher across than within sites. Distance to the closest traditional medicine market and site perimeter-to-area ratio were the greatest drivers of species richness, whilst altitude, aspect, mean temperature and rainfall seasonality were the main contributors to species composition patterns. Conclusion: SCP can use key environmental and climatic categories to improve selection of grasslands to maximise both species richness and variation in species composition. A more fine-scale systematic conservation plan will, in turn, provide a more robust basis for development decisions. The outcomes illustrate the importance of urban and peri-urban conservation efforts, including fine-scale conservation planning, in contributing to regional, national conservation targets.


2009 ◽  
Vol 57 (2) ◽  
pp. 197-203 ◽  
Author(s):  
T. Sinkovč

The botanical composition of grasslands determines the agronomic and natural values of swards. Good grassland management usually improves herbage value, but on the other hand it frequently decreases the plant diversity and species richness in the swards. In 1999 a field trial in a split-plot design with four replicates was therefore established on the Arrhenatherion type of vegetation in Ljubljana marsh meadows in order to investigate this relationship. Cutting regimes (2 cuts — with normal and delayed first cut, 3 cuts and 4 cuts per year) were allocated to the main plots and fertiliser treatments (zero fertiliser — control, PK and NPK with 2 or 3 N rates) were allocated to the sub-plots. The results at the 1 st cutting in the 5 th trial year were as follows: Fertilising either with PK or NPK had no significant negative effect on plant diversity in any of the cutting regimes. In most treatments the plant number even increased slightly compared to the control. On average, 20 species were listed on both unfertilised and fertilised swards. At this low to moderate level of exploitation intensity, the increased number of cuts had no significant negative effect on plant diversity either (19 species at 2 cuts vs. 20 species at 3 or 4 cuts). PK fertilisation increased the proportion of legumes in the herbage in the case of 2 or 3 cuts. The proportion of grasses in the herbage increased in all the fertilisation treatments with an increased numbers of cuts. Fertiliser treatment considerably reduced the proportion of marsh horsetail ( Equisetum palustre ) in the herbage of the meadows. This effect was even more pronounced at higher cut numbers. The proportion of Equisetum palustre in the herbage was the highest in the unfertilised sward with 2 cuts (26.4 %) and the lowest in the NPK-fertilised sward with 4 cuts (1.4%).


One Health ◽  
2021 ◽  
pp. 100299
Author(s):  
Michael G. Walsh ◽  
Rashmi Bhat ◽  
Venkatesh Nagarajan-Radha ◽  
Prakash Narayanan ◽  
Navya Vyas ◽  
...  

2011 ◽  
Vol 8 (3) ◽  
pp. 397-400 ◽  
Author(s):  
Jake L. Snaddon ◽  
Edgar C. Turner ◽  
Tom M. Fayle ◽  
Chey V. Khen ◽  
Paul Eggleton ◽  
...  

The exceptionally high species richness of arthropods in tropical rainforests hinges on the complexity of the forest itself: that is, on features such as the high plant diversity, the layered nature of the canopy and the abundance and the diversity of epiphytes and litter. We here report on one important, but almost completely neglected, piece of this complex jigsaw—the intricate network of rhizomorph-forming fungi that ramify through the vegetation of the lower canopy and intercept falling leaf litter. We show that this litter-trapping network is abundant and intercepts substantial amounts of litter (257.3 kg ha −1 ): this exceeds the amount of material recorded in any other rainforest litter-trapping system. Experimental removal of this fungal network resulted in a dramatic reduction in both the abundance (decreased by 70.2 ± 4.1%) and morphospecies richness (decreased by 57.4 ± 5.1%) of arthropods. Since the lower canopy levels can contain the highest densities of arthropods, the proportion of the rainforest fauna dependent on the fungal networks is likely to be substantial. Fungal litter-trapping systems are therefore a crucial component of habitat complexity, providing a vital resource that contributes significantly to rainforest biodiversity.


Sign in / Sign up

Export Citation Format

Share Document