scholarly journals Development of Nutrient Uptake by Understory Plant Arrhenatherum elatius and Microbial Biomass during Primary Succession of Forest Soils in Post-Mining Land

Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 247 ◽  
Author(s):  
Satoshi Kaneda ◽  
Šárka Angst ◽  
Jan Frouz

The development of plant and soil microbial communities is one of the basic preconditions for the restoration of functional ecosystems. However, nutrients are concurrently used by plants and microbes, and the dynamics of this interaction during ecosystem development have seldom been studied. The aim of our study, thus, was to describe the dynamics of nutrient availability in soil and, at the same time, the nutrient accumulation in plant and microbial biomass along an unassisted primary succession heading toward broadleaf forest. The growth of the understory plant Arrhenatherum elatius on soils originating from three (16, 22, and 45 years’ old) successional stages of a post-mining area and the development of the microbial community in the presence or absence of this plant were studied in a pot experiment. Both, the plant biomass and carbon (C) in microbial biomass in intermediate and late middle successional stages were higher than those in the early stage. In soil, extractable organic C, extractable organic nitrogen (N), and inorganic N increased with proceeding succession, but Olsen phosphorus (P) peaked in the intermediate successional stage. The amounts of N and P in plant and microbial biomass increased during succession. In the late middle successional stage, the amount of P in microbial biomass exceeded that of plant bound P approximately twice, and this increase was higher in pots with plants than without. The results imply that the competition between plants and microbes for available P may increase microbial P uptake and, thus, hinder plant growth in later successional stages.

2021 ◽  
Author(s):  
Miao-Ping Xu ◽  
Jia-Yi Wang ◽  
Xin-Hui Han ◽  
Cheng-Jie Ren ◽  
Gai-He Yang

Abstract Soil microorganisms play an important role in the circulation of materials and nutrients between plants and soil ecosystems, but the drivers of microbial community composition and diversity remain uncertain in different vegetation restoration patterns. We studied soil physicochemical properties (i.e., soil moisture, bulk density, pH, soil nutrients, available nutrients), plant characteristics (i.e., Shannon index [HPlant] and Richness index [SPlant], litter biomass [LB], and fine root biomass [FRB]), and microbial variables (biomass, enzyme activity, diversity and composition of bacterial and fungal communities) in different plant succession patterns (Robinia pseudoacacia [MF], Caragana korshinskii [SF] and grassland [GL]) on the Loess Plateau. The herb communities, soil microbial biomass and enzyme activities were strongly affected by vegetation restoration. And soil bacterial and fungal communities were significantly different from each other at the sites. Furthermore, LB and FRB were significantly positively correlated with SBacteria, soil microbial biomass, enzyme activities, Proteobacteria, Zygomycota and Cercozoa, while negatively correlated with Actinobacteria and Basidiomycota. In addition, soil water content (SW), pH and nutrients have important effects on the bacterial and fungal diversities, Acidobacteria, Proteobacteria, Nitrospirae, Zygomycota and microbial biomass. Furthermore, plant characteristics and soil properties modulated the composition and diversity of soil microorganisms, respectively. Overall, the relative contribution of vegetation and soil to the diversity and composition of soil bacterial and fungal communities illustrated that plant characteristics and soil properties may synergistically modulate soil microbial communities. And soil bacterial and fungal communities mainly depend on plant biomass and soil nutrients.


2013 ◽  
Vol 2 ◽  
pp. 40-45 ◽  
Author(s):  
Tej Narayan Mandal

The pattern of natural restoration in soil and plant components was studied in five landslide-damaged (1-58-year-old) sites in the tropical moist sal (Shorea robusta) forest ecosystem of Nepal Himalaya .Rate of restoration in soil properties was faster in the early successional stages (1-15 year) than late stages while plant biomass recovered rapidly after 15-year age. Based on the recovery in ecosystem properties; the 58- year-old landslide damaged site demonstrated the re-establishment of an ecosystem showing closer affinity with the mature sal forest. On the basis of best fit power function models it was concluded that the estimated times for the 58-year old site to reach the level of undisturbed matured sal forest would be about 30-35 years for microbial biomass (C and N) and plant biomass and about 100-150 year for soil organic Carbon and total N. Higher accumulation of soil microbial biomass, plant biomass and high N-mineralization rate at late successional stages indicated the re-establishment of an ecosystem with enriched soil and restitution of nutrient cycling during the course of ecosystem restoration DOI: http://dx.doi.org/10.3126/njbs.v2i0.7488 Nepalese Journal of Biosciences 2 : 40-45 (2012)


HortScience ◽  
2014 ◽  
Vol 49 (11) ◽  
pp. 1408-1413 ◽  
Author(s):  
Xiangdong Huang ◽  
Dong Xue ◽  
Lian Xue

To understand the effects of tree peony (Paeonia suffruticosa) on soil microbiological and biochemical properties, soil samples were collected from tree peony growing sites with 3 growth years and four tree peony cultivars as well as from an adjacent wasteland in a tree peony garden at Luoyang, Henan Province of China. With the development of the tree peony garden ecosystem, soil microbial biomass carbon (Cmic), basal respiration (Rmic), Cmic as a percent of soil organic C (Cmic/Corg), and enzyme activities first increased and then decreased. For the tree peony cultivars Yao Huang and Dou Lu, Cmic, Rmic, Cmic/Corg, catalase, invertase, cellulose, proteinase, and phosphatase decreased after 5 years of growth, whereas urease decreased after 12 years. For the cultivars Er Qiao and Shou An Hong, catalase, proteinase, and phosphatase decreased after 5 years, whereas Cmic, Rmic, Cmic/Corg, invertase, cellulose, and urease decreased after 12 years. Biolog analysis indicated that the average well color development and microbial functional diversity were significantly greater at the 5-year sites than in the wasteland but decreased significantly as growth continued. The growth duration of tree peony had a greater effect on soil microbial communities than did tree peony cultivar.


1996 ◽  
Vol 10 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Thomas P. Sullivan ◽  
R. A. Lautenschlager ◽  
Robert G. Wagner

This study was designed to evaluate changes in plant biomass, species richness, and diversity after application of glyphosate herbicide in several successional stages of sub-boreal spruce forest near Prince George, British Columbia, Canada. Vegetation was sampled in replicate control (reference) and treatment blocks of “herb,” “shrub,” and “shrub-tree” stages of cutover forest habitats. Volume of herb layers declined temporarily in the first post-treatment year. Shrub layers were reduced in herb and shrub stages, and shrubs and trees were reduced temporarily in the shrub-tree stage. Species richness of herbs and shrubs was similar in control and treatment blocks in the herb successional stage, but shrub richness declined on the treatment in the shrub stage. There were no consistent differences in numbers of herb, shrub, or tree species between control and treatment blocks in the shrub-tree stage. Species diversity (Simpson's index and Shannon-Wiener function) of herbaceous plants was not affected by herbicide application in any of the successional stages, but diversity of shrubs was lower in treatment than control blocks in the herb and shrub stages. Diversity of trees was reduced on treatment blocks in the shrub-tree stage. Species abundance curves of overall plant communities showed little change in the herb stage, a decline in the first post-treatment year in the shrub and shrub-tree stages, with similar patterns between control and treatment blocks in subsequent post-treatment years. The general lack of community-wide reductions in plant biomass and diversity, and the short-term duration of specific changes, suggest that conifer release treatments of plantations have no substantial, incremental effects on wildlife habitat.


Forests ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 755 ◽  
Author(s):  
Min Song ◽  
Wanxia Peng ◽  
Hu Du ◽  
Qingguo Xu

Spontaneous vegetation succession after agricultural abandonment is a general phenomenon in many areas of the world. As important indicators of nutrient status and biogeochemical cycling in ecosystems, the stoichiometry of key elements such as carbon (C), nitrogen (N) and phosphorous (P) in soil and microbial biomass, and their responses to vegetation recolonization and succession after agricultural abandonment remain poorly understood. Here, based on a space-for-time substitution approach, surface soil samples (0–15 cm) were collected from four vegetation types, e.g., tussock grassland, shrubland, secondary forest, and primary forest, which represent four successional stages across this region. All samples were examined C, N and P concentrations and their ratios in soil and microbial biomass. The results showed that soil organic C and total N content increased synchronously but total soil P did not remarkably change along a progressive vegetation succession. Consequently, soil C:P and N:P ratios increased while C:N ratio stayed almost unchanged during vegetation succession. Soil microbial biomass C (SMBC) and microbial biomass N (SMBN) concentrations elevated while SMBP did not significantly change during vegetation succession. Unlike the soil C:N:P stoichiometry, however, microbial C:N and C:P ratios were significantly or marginally significantly greater in grassland than in the other three successional stages, while microbial N:P did not significantly vary across the four successional stages. Overall, the present study demonstrated that soil and microbial stoichiometry responded differently to secondary vegetation succession in a karst region of subtropical China.


2018 ◽  
Vol 41 (3) ◽  
Author(s):  
Sofia Calvo Rodriguez ◽  
Julio Calvo Alvarado ◽  
Mario Marcos do Espírito-Santo ◽  
Yule Roberta Ferreira Nunes

ABSTRACT Myracrodruon urundeuva, better known in Brazil as “Aroeira”, is an arboreal species highly used for its commercial and pharmacological value. Despite the high commercial value in the timber market, this species lacks studies analyzing the recovery time and growth in different stages of succession in the Brazilian tropical dry forests. The main objective of this study was to determine growth rates of this species in three successional stages of a tropical dry forest in Mata Seca State Park, in Minas Gerais, Brazil. We measured all individuals (≥5cm of DBH) annually in 18 permanent plots in early, intermediate, and late successional stages over a period of 8 years (2006-2014). We calculated the annual diameter increments for each individual of this species, for each successional stage and by diameter class. We obtained the following mean annual increments by successional stage: early (10.53 mm/yr), intermediate (2.09 mm/yr), and late (2.90 mm/yr). Increment growth rates were similar between the intermediate and late successional stages. The highest incremental increase in diameter was obtained in the diameter classes 5-15 cm and 15-25 cm in the early stage, and for the intermediate stage, maximum increments were found in the 5-15 cm diameter class and 35-45 cm class for the late stage. Results from this study support the conclusion that this tree is not only a pioneering species but that it also tolerates the conditions of advanced successional stages. Given the fast and high diametric increments observed in the early stage of succession and the smaller diametric classes, this species demonstrates great potential for silvicultural management.


2021 ◽  
Vol 9 (7) ◽  
pp. 1400
Author(s):  
Marta Bertola ◽  
Andrea Ferrarini ◽  
Giovanna Visioli

Soil is one of the key elements for supporting life on Earth. It delivers multiple ecosystem services, which are provided by soil processes and functions performed by soil biodiversity. In particular, soil microbiome is one of the fundamental components in the sustainment of plant biomass production and plant health. Both targeted and untargeted management of soil microbial communities appear to be promising in the sustainable improvement of food crop yield, its nutritional quality and safety. –Omics approaches, which allow the assessment of microbial phylogenetic diversity and functional information, have increasingly been used in recent years to study changes in soil microbial diversity caused by agronomic practices and environmental factors. The application of these high-throughput technologies to the study of soil microbial diversity, plant health and the quality of derived raw materials will help strengthen the link between soil well-being, food quality, food safety and human health.


1993 ◽  
Vol 73 (1) ◽  
pp. 39-50 ◽  
Author(s):  
D. A. Angers ◽  
N. Bissonnette ◽  
A. Légère ◽  
N. Samson

Crop rotations and tillage practices can modify not only the total amount of organic matter (OM) in soils but also its composition. The objective of this study was to determine the changes in total organic C, microbial biomass C (MBC), carbohydrates and alkaline phosphatase activity induced by 4 yr of different rotation and tillage combinations on a Kamouraska clay in La Pocatière, Quebec. Two rotations (continuous barley (Hordeum vulgare L.) versus a 2-yr barley–red clover (Trifolium pratense L.) rotation) and three tillage treatments (moldboard plowing (MP), chisel plowing (CP) and no-tillage (NT)) were compared in a split-plot design. Total organic C was affected by the tillage treatments but not by the rotations. In the top soil layer (0–7.5 cm), NT and CP treatments had C contents 20% higher than the MP treatment. In the same soil layer, MBC averaged 300 mg C kg−1 in the MP treatment and up to 600 mg C kg−1 in the NT soil. Hot-water-extractable and acid-hydrolyzable carbohydrates were on average 40% greater under reduced tillage than under MP. Both carbohydrate fractions were also slightly larger in the rotation than in the soil under continuous barley. The ratios of MBC and carbohydrate C to total organic C suggested that there was a significant enrichment of the OM in labile forms as tillage intensity was reduced. Alkaline phosphatase activity was 50% higher under NT and 20% higher under CP treatments than under MP treatment and, on average, 15% larger in the rotation than in the continuous barley treatment. Overall, the management-induced differences were slightly greater in the top layer (0–7.5 cm) than in the lower layer of the Ap horizon (7.5–15 cm). All the properties measured were highly correlated with one another. They also showed significant temporal variations that were, in most cases, independent of the treatments. Four years of conservation tillage and, to a lesser extent, rotation with red clover resulted in greater OM in the top soil layer compared with the more intensive systems. This organic matter was enriched in labile forms. Key words: Soil management, soil quality, organic matter, carbohydrates, microbial biomass, phosphatase


1997 ◽  
Vol 35 (5) ◽  
pp. 1-10 ◽  
Author(s):  
K. R. Reddy ◽  
E. M. D'Angelo

Wetlands support several aerobic and anaerobic biogeochemical processes that regulate removal/retention of pollutants, which has encouraged the intentional use of wetlands for pollutant abatement. The purpose of this paper is to present a brief review of key processes regulating pollutant removal and identify potential indicators that can be measured to evaluate treatment efficiency. Carbon and toxic organic compound removal efficiency can be determined by measuring soil or water oxygen demand, microbial biomass, soil Eh and pH. Similarly, nitrate removal can be predicted by dissolved organic C and microbial biomass. Phosphorus retention can be described by the availability of reactive Fe and Al in acid soils and Ca and Mg in alkaline soils. Relationships between soil processes and indicators are useful tools to transfer mechanistic information between diverse types of wetland treatment systems.


Sign in / Sign up

Export Citation Format

Share Document