scholarly journals Screening, Identification and Growth-Promotion Products of Multifunctional Bacteria in a Chinese Fir Plantation

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 120
Author(s):  
Guangyu Zhao ◽  
Yihui Wei ◽  
Jiaqi Chen ◽  
Yuhong Dong ◽  
Lingyu Hou ◽  
...  

Purpose: This research was aimed to screen and identify multifunctional phosphorus-dissolving bacteria of a Chinese fir (Cunninghamia lanceolata) plantation and study its phosphorus-dissolving characteristics in order to provide strain resources and a theoretical basis for developing the appropriate bacterial fertilizer of a Chinese fir plantation. Methods: First, phosphorus-dissolving bacteria were isolated from the woodland soil of a Chinese fir plantation by Pikovskava inorganic phosphorus medium (PVK). Then, some growth-promoting indicators of primary screening strains were determined, including the capacity of phosphorus-solubilized, nitrogenase activity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, production of indole-3-acetic acid (IAA), secretion of iron carrier and so on. Finally, the screening multifunctional phosphorus-dissolving bacteria were identified, which were combined with colony characteristics, physiological and biochemical tests and molecular biotechnology. Results: (1) Thirteen phosphorus-dissolving bacteria were isolated and screened in total, and P5 (195.61 mg·L−1) had the strongest capacity of phosphorus-solubilized. Five phosphorus-dissolving bacteria were provided with nitrogenase activity, and the highest activity of nitrogenase was P10 and P5 (71.90 C2H4 nmol·mL−1·h−1 and 71.00 C2H4 nmol·mL−1·h−1, respectively). Four strains were provided with ACC deaminase activity, and the highest activity of ACC deaminase was P5 and P9, (0.74 μmol·mg−1·h−1 and 0.54 μmol·mg−1·h−1, respectively). Most strains could secrete IAA, and three strains of bacteria had a strong secretory ability, which could secrete IAA with a concentration greater than 15 mg·mL−1, and P5 was 18.00, P2 was 17.30, P6 was 15.59 (mg·mL−1). P5 produced carriers of iron better than others, and the ratio of the diameter of the iron production carrier ring to the diameter of the colony was 1.80, respectively, which was significantly higher than other strains. Combining all kinds of factors, P5 multifunctional phosphorus-dissolving bacteria were screened for eventual further study. (2) Strain P5 was identified as Burkholderia ubonensis, based on the colony characteristics, physiological and biochemical tests, 16SrDNA sequence analysis and phylogenetic tree construction. Conclusion: P5 has a variety of high-efficiency growth-promoting capabilities, and the ability to produce IAA, ACC deaminase activity and siderophore performance are significantly higher than other strains, which had great potential in the development of microbial fertilizer.

2019 ◽  
Vol 7 (3) ◽  
pp. 82 ◽  
Author(s):  
Oyungerel Natsagdorj ◽  
Hisayo Sakamoto ◽  
Dennis Santiago ◽  
Christine Santiago ◽  
Yoshitake Orikasa ◽  
...  

Utilization of plant growth-promoting bacteria colonizing roots is environmentally friendly technology instead of using chemicals in agriculture, and understanding of the effects of their colonization modes in promoting plant growth is important for sustainable agriculture. We herein screened the six potential plant growth-promoting bacteria isolated from Beta vulgaris L. (Rhizobium sp. HRRK 005, Polaromonas sp. HRRK 103, Variovorax sp. HRRK 170, Mesorhizobium sp. HRRK 190, Streptomyces sp. HRTK 192, and Novosphingobium sp. HRRK 193) using a series of biochemical tests. Among all strains screened, HRRK 170 had the highest potential for plant growth promotion, given its ability to produce plant growth substances and enzymes such as siderophores and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, respectively, concomitantly with active growth in a wider range of temperatures (10–30 °C) and pH (5.0–10.0). HRRK 170 colonized either as spots or widely on the root surface of all vegetable seedlings tested, but significant growth promotion occurred only in two vegetables (Chinese cabbage and green pepper) within a certain cell density range localized in the plant roots. The results indicate that HRRK 170 could function as a plant growth promoter, but has an optimum cell density for efficient use.


2015 ◽  
Vol 9 (3) ◽  
pp. 24-37 ◽  
Author(s):  
Mohammed Faisal Ansari ◽  
Devayani R. Tipre ◽  
Shailesh R. Dave

Organic farming is gaining popularity where bio-inoculants could play a key role in promoting the growth of plants. The liquid biofertilizers concept is new to farmers and developed recently. Lots of liquid biofertilizers formulations and field efficiency were shown in the past by various researchers, but the plant growth promoting (PGP) efficiency of the liquid biofertilizers isolates were not reported till date. In the present work 6 different commercially available liquid biofertilizers were used to isolate the organism. These isolated cultures were used to study their PGP efficiency with respect to phosphate solubilization and production of EPS, IAA, siderophore, ammonia, chitinase, ACC-deaminase and HCN. The phosphate solubilization was shown up to 303 g/ml by APS isolate. EPS production was shown by using different C sources and production up to 24 g/l was shown by studied isolated. Most of the organisms studied were able to produce IAA and highest production was shown up to 20 g/ml. More than 65% studied isolates showed siderophore and ACC-deaminase production. The present study shows that the commercial liquid biofertilizer isolates possess multiple traits of plant growth promotion. DOI: http://dx.doi.org/10.3126/ijls.v9i3.12463   International Journal of Life Sciences 9 (3): 2015; 24-37


2021 ◽  
Vol 5 ◽  
Author(s):  
Munusamy Madhaiyan ◽  
Govindan Selvakumar ◽  
Tan HianHwee Alex ◽  
Lin Cai ◽  
Lianghui Ji

A survey of bacterial endophytes associated with the leaves of oil palm and acacias resulted in the isolation of 19 bacterial strains belonging to the genera Paraburkholderia, Caballeronia, and Chitinasiproducens, which are now regarded as distinctively different from the parent genus Burkholderia. Most strains possessed one or more plant growth promotion (PGP) traits although nitrogenase activity was present in only a subset of the isolates. The diazotrophic Paraburkholderia tropica strain S39-2 with multiple PGP traits and the non-diazotrophic Chitinasiproducens palmae strain JS23T with a significant level of 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity were selected to investigate the influence of bacterial inoculation on some economically important tree species. Microscopic examination revealed that P. tropica S39-2 was rhizospheric as well as endophytic while C. palmae JS23T was endophytic. P. tropica strain S39-2 significantly promoted the growth of oil palm, eucalyptus, and Jatropha curcas. Interestingly, the non-diazotrophic, non-auxin producing C. palmae JS23T strain also significantly promoted the growth of oil palm and eucalyptus although it showed negligible effect on J. curcas. Our results suggest that strains belonging to the novel Burkholderia-related genera widely promote plant growth via both N-independent and N-dependent mechanisms. Our results also suggest that the induction of defense response may prevent the colonization of an endophyte in plants.


2008 ◽  
Vol 54 (4) ◽  
pp. 248-258 ◽  
Author(s):  
Russell K. Hynes ◽  
Grant C.Y. Leung ◽  
Danielle L.M. Hirkala ◽  
Louise M. Nelson

The use of beneficial soil microorganisms as agricultural inputs for improved crop production requires selection of rhizosphere-competent microorganisms with plant growth-promoting attributes. A collection of 563 bacteria originating from the roots of pea, lentil, and chickpea grown in Saskatchewan was screened for several plant growth-promoting traits, for suppression of legume fungal pathogens, and for plant growth promotion. Siderophore production was detected in 427 isolates (76%), amino-cyclopropane-1-carboxylic acid (ACC) deaminase activity in 29 isolates (5%), and indole production in 38 isolates (7%). Twenty-six isolates (5%) suppressed the growth of Pythium sp. strain p88-p3, 40 isolates (7%) suppressed the growth of Fusarium avenaceum , and 53 isolates (9%) suppressed the growth of Rhizoctonia solani CKP7. Seventeen isolates (3%) promoted canola root elongation in a growth pouch assay, and of these, 4 isolates promoted the growth of lentil and one isolate promoted the growth of pea. Fatty acid profile analysis and 16S rRNA sequencing of smaller subsets of the isolates that were positive for the plant growth-promotion traits tested showed that 39%–42% were members of the Pseudomonadaceae and 36%–42% of the Enterobacteriaceae families. Several of these isolates may have potential for development as biofertilizers or biopesticides for western Canadian legume crops.


2021 ◽  
Vol 9 (7) ◽  
pp. 1491
Author(s):  
Alka Sagar ◽  
Parikshita Rathore ◽  
Pramod W. Ramteke ◽  
Wusirika Ramakrishna ◽  
Munagala S. Reddy ◽  
...  

Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.


Author(s):  
Twinkle Chaudhary ◽  
Rajesh Gera ◽  
Pratyoosh Shukla

Plant growth-promoting rhizobacteria (PGPR) are root endophytic bacteria used for growth promotion, and they have broader applications in enhancing specific crop yield as a whole. In the present study, we have explored the potential of Rhizobium pusense MB-17a as an endophytic bacterium isolated from the roots of the mung bean (Vigna radiata) plant. Furthermore, this bacterium was sequenced and assembled to reveal its genomic potential associated with plant growth-promoting traits. Interestingly, the root endophyte R. pusense MB-17a showed all essential PGPR traits which were determined by biochemical and PGPR tests. It was noted that this root endophytic bacterium significantly produced siderophores, indole acetic acid (IAA), ammonia, and ACC deaminase and efficiently solubilized phosphate. The maximum IAA and ammonia produced were observed to be 110.5 and 81 μg/ml, respectively. Moreover, the PGPR potential of this endophytic bacterium was also confirmed by a pot experiment for mung bean (V. radiata), whose results show a substantial increase in the plant's fresh weight by 76.1% and dry weight by 76.5% on the 60th day after inoculation of R. pusense MB-17a. Also, there is a significant enhancement in the nodule number by 66.1% and nodule fresh weight by 162% at 45th day after inoculation with 100% field capacity after the inoculation of R. pusense MB-17a. Besides this, the functional genomic annotation of R. pusense MB-17a determined the presence of different proteins and transporters that are responsible for its stress tolerance and its plant growth-promoting properties. It was concluded that the unique presence of genes like rpoH, otsAB, and clpB enhances the symbiosis process during adverse conditions in this endophyte. Through Rapid Annotation using Subsystem Technology (RAST) analysis, the key genes involved in the production of siderophores, volatile compounds, indoles, nitrogenases, and amino acids were also predicted. In conclusion, the strain described in this study gives a novel idea of using such type of endophytes for improving plant growth-promoting traits under different stress conditions for sustainable agriculture.


2016 ◽  
Vol 63 (3) ◽  
pp. 191-207 ◽  
Author(s):  
Shikha Verma ◽  
Anurup Adak ◽  
Radha Prasanna ◽  
Shri Dhar ◽  
Harshwardhan Choudhary ◽  
...  

Legume–microbial interactions focus mainly on Rhizobium. The present study aimed to evaluate the plant growth-promoting (PGP) potential of bacterial and cyanobacterial formulations and variety-specific differences following their inoculation in two varieties of pea (Pisum sativum L.), namely Arkel and GP-17. Providencia sp. PW5–Anabaena laxa CW1 treatment was the most promising, with an 11%–76% increase in defense enzyme activity in both varieties. Interestingly, Arkel responded better in terms of nitrogenase activity, which was enhanced several-fold in the inoculated treatments, and exhibited a significant correlation (r = 0.787, 0.778, 0.755; p < 0.05) with shoot length, fresh weight and nodule number per plant, respectively. Nodule number was significantly correlated (r = 0.74, 0.81; p < 0.05) with PAL and PPO activity, respectively, and with microbial biomass carbon, alkaline phosphatase and dehydrogenase activity (r = 0.582, 0.538, 0.666; p < 0.05), respectively. Variety GP-17, however, responded better in terms of increasing the polysaccharide and glomalin content of soil. This study reveals the promise of co-inoculation of PGPRs (plant growth-promoting Rhizobacteria) as synergistic partners for improving plant growth mobilization of major nutrients in pea. However, there is a need to study root exudate patterns to identify promising microbe–variety combinations.


2012 ◽  
Vol 25 (5) ◽  
pp. 668-676 ◽  
Author(s):  
Jennifer C. Stearns ◽  
Owen Z. Woody ◽  
Brendan J. McConkey ◽  
Bernard R. Glick

Plants in association with plant growth-promoting rhizobacteria can benefit from lower plant ethylene levels through the action of the bacterial enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase. This enzyme cleaves the immediate biosynthetic precursor of ethylene, ACC. Ethylene is responsible for many aspects of plant growth and development but, under stressful conditions, it exacerbates stress symptoms. The ACC deaminase-containing bacterium Pseudomonas putida UW4 is a potent plant growth-promoting strain and, as such, was used to elaborate the detailed role of bacterial ACC deaminase in Brassica napus (canola) plant growth promotion. Transcriptional changes in bacterially treated canola plants were investigated with the use of an Arabidopsis thaliana oligonucleotide microarray. A heterologous approach was necessary because there are few tools available at present to measure global expression changes in nonmodel organisms, specifically with the sensitivity of microarrays. The results indicate that the transcription of genes involved in plant hormone regulation, secondary metabolism, and stress response was altered in plants by the presence of the bacterium, whereas the upregulation of genes for auxin response factors and the downregulation of stress response genes was observed only in the presence of bacterial ACC deaminase. These results support the suggestion that there is a direct link between ethylene and the auxin response, which has been suggested from physiological studies, and provide more evidence for the stress-reducing benefits of ACC deaminase-expressing plant growth-promoting bacteria.


2021 ◽  
Vol 49 (2) ◽  
pp. 12294
Author(s):  
Maria T. SALAZAR-RAMÍREZ ◽  
Jorge SÁENZ-MATA ◽  
Pablo PRECIADO-RANGEL ◽  
Manuel FORTIS-HERNÁNDEZ ◽  
Edgar O. RUEDA-PUENTE ◽  
...  

In the communities of Sierra Mojada and Viesca, Coahuila, Mexico of Coahuila desert, two rhizosphere samplings of candelilla (Euphorbia antisyphilitica Zucc) were collected to isolate, characterize, and identifying plant growth-promoting rhizobacteria (PGPR); 165 rhizobacteria were tested in vitro with Arabidopsis thaliana seedlings to evaluate their potential as plant growth promoters, and obtaining 21 strains with best results in the variables of the number of secondary roots and fresh weight concerning the uninoculated control. Their salinity tolerance was evaluated at concentrations from 0.85 M, 1.7 M and 2.55 M of NaCl. Biochemical tests were accomplishing such as siderophores production, phosphates solubilization, production of Indole-3-acetic acid (IAA), and the activity of the ACC deaminase enzyme. The results obtained from 21 strains selected, high activities were obtained in organic substances like a siderophores since they developed a translucent orange halo around their growth; four rhizobacteria developed a clear halo around the bacterial growth with a thickness between 1.487 mm ± 0.667 mm and 5.267 mm ± 0.704 mm in phosphates solubilization; in the production of Indole-3-acetic acid (IAA), the bacterial strains showed the presence of this phytohormone, with values ​​from 4.444 μg mL-1 to 19.286 μg mL-1; and according to the activity of the ACC deaminase enzyme, values ​​from 0.424 to 1.306 µmol α-KB/h/mg Pr were showed. 16S rRNA sequencing was carried out and genus identified were Bacillus, Staphylococcus, Acinetobacter, Cronobacter and Siccibacter. The results obtained show the potential of the isolated rhizobacteria as growth promoters and the increase in the biomass of the Arabidopsis thaliana seedlings is evident. This is a first indication to proceed to carry out tests in different phenological stages in crops of agricultural importance.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Christian Suarez ◽  
Stefan Ratering ◽  
Torsten Hain ◽  
Moritz Fritzenwanker ◽  
Alexander Goesmann ◽  
...  

Strain E19T described as Hartmannibacter diazotrophicus gen. nov. sp. nov. was isolated from the rhizosphere of Plantago winteri from a natural salt meadow in a nature protection area. Strain E19T is a plant growth-promoting rhizobacterium able to colonize the rhizosphere of barley and to promote its growth only under salt stress conditions. To gain insights into the genetic bases of plant growth promotion and its lifestyle at the rhizosphere under salty conditions, we determined the complete genome sequence using two complementary sequencing platforms (Ilumina MiSeq and PacBio RSII). The E19T genome comprises one circular chromosome and one plasmid containing several genes involved in salt adaptation and genes related to plant growth-promoting traits under salt stress. Based on previous experiments, ACC deaminase activity was identified as a main mechanism of E19T to promote plant growth under salt stress. Interestingly, no genes classically reported to encode for ACC deaminase activity are present. In general, the E19T genome provides information to confirm, discover, and better understand many of its previously evaluated traits involved in plant growth promotion under salt stress. Furthermore, the complete E19T genome sequence helps to define its previously reported unclear 16S rRNA gene-based phylogenetic affiliation. Hartmannibacter forms a distinct subcluster with genera Methylobrevis, Pleomorphomonas, Oharaeibacter, and Mongoliimonas subclustered with genera belonging to Rhizobiales.


Sign in / Sign up

Export Citation Format

Share Document