scholarly journals Effect of the Forest-Mine Boundary Form on Woody Colonization and Forest Expansion in Degraded Ecosystems

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 773
Author(s):  
Carolina Martínez-Ruiz ◽  
Ana I. Milder ◽  
Daphne López-Marcos ◽  
Pilar Zaldívar ◽  
Belén Fernández-Santos

We evaluated the ecological significance of the boundary form between two patches with contrasting vegetation (mine grassland and adjacent forest) on woody colonization and forest expansion in open-cast coal mines in Northern Spain. Woody colonization and browsing traces were measured on three mine sites, along 24 transects that were laid out perpendicular to the forest-mine boundary and classified according to their shape (concave, convex, straight). Mine sites were colonized from the close forest by woody species, whose colonization intensity depends on the boundary form. The overall colonization intensity decreased with increasing distance to the forest and differed depending on the boundary form. The more intense colonization was found in concave boundaries and the strongest decrease in convex boundaries close to the forest, whereas straight boundaries showed an intermediate colonization pattern. Concave boundaries reached higher woody cover in the basal strata of the mines than convex (up to 2 m) or straight boundaries (up to 1 m) from 11 m to the forest edge, mainly by the presence of dense patches of Cytisus scoparius (L.) Link, with a scattered overstory of Genista florida L. These shrubs might reduce the browsing intensity and act as nurse plants facilitating the establishment of Quercus petraea (Matt.) Liebl. in mine areas at greater distances from the forest edge. The forest-mine boundary form does not affect the forest vertical structure that is homogenous and does not help explain the woody colonization pattern in the mines. We conclude that edge characteristics have a strong potential to be used in the restoration of native forests based on natural processes. The implications of our results for sessile oak (Quercus petraea (Matt.) Liebl.) forest expansion along edges in fragmented Mediterranean forest landscapes were discussed.

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1542
Author(s):  
Nadezhda V. Genikova ◽  
Viktor N. Mamontov ◽  
Alexander M. Kryshen ◽  
Vladimir A. Kharitonov ◽  
Sergey A. Moshnikov ◽  
...  

Bilberry spruce forests are the most widespread forest type in the European boreal zone. Limiting the clear-cuttings size leads to fragmentation of forest cover and the appearance of large areas of ecotone complexes, composed of forest (F), a transition from forest to the cut-over site under tree canopy (FE), a transition from forest to the cut-over site beyond tree canopy (CE), and the actual clear-cut site (C). Natural regeneration of woody species (spruce, birch, rowan) in the bilberry spruce stand—clear-cut ecotone complex was studied during the first decade after logging. The effects produced by the time since cutting, forest edge aspect, and the ground cover on the emergence and growth of trees and shrubs under forest canopy and openly in the clear-cut were investigated. Estimating the amount and size of different species in the regeneration showed FE and CE width to be 8 m—roughly half the height of first-story trees. Typical forest conditions (F) feature a relatively small amount of regenerating spruce and birch. The most favorable conditions for natural regeneration of spruce in the clear-cut—mature bilberry spruce stand ecotone are at the forest edge in areas of transition both towards the forest and towards the clear-cut (FE and CE). Clear-cut areas farther from the forest edge (C) offer an advantage to regenerating birch, which grows densely and actively in this area.


Bothalia ◽  
2007 ◽  
Vol 37 (2) ◽  
pp. 249-258 ◽  
Author(s):  
M. J. S. Kellerman ◽  
M. W. Van Rooyen

Seasonal variation in seed bank size and species composition of five selected habitat types within the Tembe Elephant Park. South Africa, was investigated. At three-month intervals, soil samples were randomly collected from five different habitat types: a, Licuati forest; b, Licuati thicket; c, a bare or sparsely vegetated zone surrounding the forest edge, referred to as the forest/grassland ecotone; d, grassland; and e, open woodland. Most species in the seed bank flora were either grasses, sedges, or forbs, with hardly any evidence of woody species. The Licuati forest and thicket soils produced the lowest seed densities in all seasons.  Licuati forest and grassland seed banks showed a two-fold seasonal variation in size, those of the Licuati thicket and woodland a three-fold variation in size, whereas the forest/grassland ecotone maintained a relatively large seed bank all year round. The woodland seed bank had the highest species richness, whereas the Licuati forest and thicket soils were poor in species. Generally, it was found that the greatest correspondence in species composition was between the Licuati forest and thicket, as well as the forest/grassland ecotone and grassland seed bank floras.


2004 ◽  
Vol 70 (2) ◽  
pp. 284-297 ◽  
Author(s):  
J. Loidi ◽  
M. Herrera ◽  
I. Garcia-Mijangos ◽  
I. Biurrun

1989 ◽  
Vol 37 (5) ◽  
pp. 413 ◽  
Author(s):  
GL Unwin

Structural and floristic features of the rainforest-eucalypt forest boundary are described for two sites on the seasonally clouded eastern slopes of the Herberton Highland, north Queensland. Permanent sample plots, transects and canopy profiles were used to analyse variations across the narrow ecotone. The forest ecotone was found highly variable, spatially and temporally. Within rainforest, richness of woody species was maintained through to the closed forest edge. However, structural changes were more pronounced towards the boundary than were floristic variations and a fringe of immature rainforest varied in depth from 20-500 m. In the open forest margin, tall trees of Eucalyptus grandls were restricted to a narrow zone between the rainforest edge and the broad expanse of medium height Eucalyptus intermedia. Within this transition, young rainforest trees and some shrubs were observed, during a 12-year interval, to be establishing beneath tall E. grandis, displacing fire-prone grasses in the process. The distribution of old E. grandis within rainforest provides a record of recent boundary change. On evidence presented, the rainforest-eucalypt forest boundary is dynamic and parts of the rainforest are expanding due to favourable contemporary fire regimes.


2013 ◽  
Vol 61 (2) ◽  
pp. 128 ◽  
Author(s):  
Thomas Ibanez ◽  
Jérôme Munzinger ◽  
Cédric Gaucherel ◽  
Thomas Curt ◽  
Christelle Hély

A direct consequence of deforestation and forest fragmentation in the tropics is the increased importance of boundaries between forest fragments and savannahs. These boundaries are critical zones for understanding the dynamics of savannahs and forests. In the present study, the spatio-temporal dynamics of a savannah–forest boundary in New Caledonia were inferred from the analyses of vegetation structure and composition along three transects. Remnant savannah trees (Melaleuca quinquenervia (Cav.) S.T.Blake) in the forest part of the transect indicated that the forest edge has shifted towards savannah. This margin-forest expansion hypothesis was reinforced by gradual changes from the forest edge to the forest core in species composition (e.g. increase in the frequency of forest-core species) and population structure (e.g. increase in forest tree-stem diameter). However, sharp changes at the forest edge (mainly the increased frequency of small forest trees) suggested that forest expansion has likely been stopped. This suggested that different phases may alternate in the dynamics of savannah–forest boundaries, including stable phases where the boundary does not move, and unstable phases where the boundary moves or expands towards savannah or forest. Variations in the fire regime as a result of the interactions among climate, fire use by humans and vegetation are likely to drive these dynamics.


2009 ◽  
Vol 39 (7) ◽  
pp. 1259-1269 ◽  
Author(s):  
Yann Vitasse ◽  
Sylvain Delzon ◽  
Caroline C. Bresson ◽  
Richard Michalet ◽  
Antoine Kremer

The aim of the study was to determine whether there are genetic variations in growth and leaf phenology (flushing and senescence) among populations of six woody species ( Abies alba Mill., Acer pseudoplatanus L., Fagus sylvatica L., Fraxinus excelsior L., Ilex aquifolium L., and Quercus petraea (Matt.) Liebl.) along altitudinal gradients, using a common-garden experiment. We found (i) significant differences in phenology and growth among provenances for most species and (ii) evidence that these among-population differences in phenology were related to the annual temperature at the provenance sites for ash, beech, and oak. It is noteworthy that along the same climatic gradient, species can exhibit opposing genetic clines: beech populations from high elevations flushed earlier than those from low elevations, whereas we observed the opposite trend for ash and oak. For most species, significant altitudinal clines for growth were also revealed. Finally, we highlighted the fact that both phenology timing and growth rate were highly consistent from year to year. The results demonstrated that despite the proximity of the populations in their natural area, differences in altitude led to genetic differentiation in their phenology and growth. These adaptive capacities acting along a natural climatic gradient could allow populations to cope with current climate change.


2015 ◽  
Vol 23 (14) ◽  
pp. 13606-13616 ◽  
Author(s):  
Josu G. Alday ◽  
Pilar Zaldívar ◽  
Paloma Torroba-Balmori ◽  
Belén Fernández-Santos ◽  
Carolina Martínez-Ruiz

Rodriguésia ◽  
2012 ◽  
Vol 63 (3) ◽  
pp. 513-524 ◽  
Author(s):  
Robberson Bernal Setubal ◽  
Ilsi Iob Boldrini

A phytosociological survey was carried out in a study area located at Serra do Sudeste, southern Brazil, where forests and grasslands are distributed in a mosaic, seeking to unravel diversity patterns in four different grassland communities. Grassland management traditionally adopted by the local population is characterized by burning practices that aim to eliminate woody species, delaying the forest expansion process that is favored by the extant climate. The number of plots distributed per community was as follows: rocky grasslands (17), dry grasslands (33), moist grasslands (15) and marshy grasslands (5). Different numbers of plots were used due to the natural conditions of these communities, with highest cover for dry grasslands, followed by rocky, moist and marshy grasslands. Data analyses consisted of calculating community indexes and parameters and exploratory multivariate analysis. We verified that c. 15% of species among the 177 registered taxa were highly dominant in the constitution of the vegetation matrix in all communities, whereas most of the species showed low frequency and cover values. Rocky and dry grasslands showed higher similarity and diversity indexes than moist and marshy grasslands. We concluded that the large number of rare or intermediate-frequency species is decisive for the high diversity found in these grasslands.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1584
Author(s):  
Antonio J. Pérez-Luque ◽  
Francisco J. Bonet-García ◽  
Regino Zamora

Land abandonment is a major global change driver in the Mediterranean region, where anthropic activity has played an important role in shaping landscape configuration. Understanding the woodland expansion towards abandoned croplands is critical to develop effective management strategies. In this study, we analyze the colonization pattern of abandoned croplands by Quercus pyrenaica in the Sierra Nevada mountain range (southern Spain). We aimed to assess differences among populations within the rear edge of the Q. pyrenaica distribution. For this purpose, we characterized (i) the colonization pattern of Q. pyrenaica, (ii) the structure of the seed source (surrounding forests), and (iii) the abundance of the main seed disperser (Eurasian jay, Garrulus glandarius). The study was conducted in five abandoned croplands located in two representative populations of Q. pyrenaica located on contrasting slopes. Vegetation plots within three habitat types (mature forest, edge-forest and abandoned cropland) were established to compute the abundance of oak juveniles. The abundance of European jay was determined using data of bird censuses (covering 7 years). Our results indicate that a natural recolonization of abandoned croplands by Q. pyrenaica is occurring in the rear edge of the distribution of this oak species. Oak juvenile abundance varied between study sites. Neither the surrounding-forest structure nor the abundance of jays varied significantly between study sites. The differences in the recolonization patterns seem to be related to differences in the previous- and post-abandonment management.


Sign in / Sign up

Export Citation Format

Share Document