scholarly journals Dynamic Changes in Plant Resource Use Efficiencies and Their Primary Influence Mechanisms in a Typical Desert Shrub Community

Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1372
Author(s):  
Yan Jiang ◽  
Yun Tian ◽  
Tianshan Zha ◽  
Xin Jia ◽  
Charles P.-A. Bourque ◽  
...  

Understanding plant resource use efficiencies (RUEs) and their tradeoffs in a desert shrub community, particularly as it concerns the usage of water, light, and nitrogen, remains an ecological imperative. Plant RUEs have been widely used as indicators to understand plant acclimation processes to unfavorable environmental conditions. This study aimed to examine seasonal dynamics in RUEs in two widely distributed plant species in a typical desert shrub community (i.e., Artemisia ordosica and Leymus secalinus) based on in-situ measurements of leaf photosynthesis, specific leaf area (SLA), leaf nitrogen concentration (i.e., Nmass + Narea), and several site-related abiotic factors. Both species exhibited significant seasonal variation in RUEs, with a coefficient of variation (CV) > 30% and seasonal divergence among the various RUEs. Seasonal divergence was largely controlled by variation in stomatal conductance (Gs), which was in turn influenced by variation in soil water content (SWC) and water vapor pressure deficit (VPD). RUEs between species converged, being positively correlated, yielding: (i) r2 = 0.40 and p < 0.01 for WUE; (ii) r2 = 0.18 and p < 0.01 for LUE;and (iii) r2 = 0.25 and p < 0.01 for NUE. RUEs for A. ordosica were mostly larger than those for L. secalinus, but less reactive to drought. This suggests A. ordosica was more conservative in its usage of available resources and was, therefore, better able to adapt to arid conditions. Resource use strategies between species differed in response to drought. Desert shrubs are projected to eventually replace grasses, as drought severity and duration increase with sustained regional climate change.

2013 ◽  
Vol 80 (2) ◽  
pp. 704-713 ◽  
Author(s):  
Estéfani García-Ríos ◽  
Alicia Gutiérrez ◽  
Zoel Salvadó ◽  
Francisco Noé Arroyo-López ◽  
José Manuel Guillamon

ABSTRACTThe effect of the main environmental factors governing wine fermentation on the fitness of industrial yeast strains has barely received attention. In this study, we used the concept of fitness advantage to measure how increasing nitrogen concentrations (0 to 200 mg N/liter), ethanol (0 to 20%), and temperature (4 to 45°C) affects competition among four commercial wine yeast strains (PDM, ARM, RVA, and TTA). We used a mathematical approach to model the hypothetical time needed for the control strain (PDM) to out-compete the other three strains in a theoretical mixed population. The theoretical values obtained were subsequently verified by competitive mixed fermentations in both synthetic and natural musts, which showed a good fit between the theoretical and experimental data. Specifically, the data show that the increase in nitrogen concentration and temperature values improved the fitness advantage of the PDM strain, whereas the presence of ethanol significantly reduced its competitiveness. However, the RVA strain proved to be the most competitive yeast for the three enological parameters assayed. The study of the fitness of these industrial strains is of paramount interest for the wine industry, which uses them as starters of their fermentations. Here, we propose a very simple method to model the fitness advantage, which allows the prediction of the competitiveness of one strain with respect to different abiotic factors.


2019 ◽  
Vol 48 (4) ◽  
pp. 404-414 ◽  
Author(s):  
Liudmila Stelmakh ◽  
Tatiana Gorbunova

Abstract Using the field data collected in the Black Sea in September 2005–May 2013, the authors studied the spatial variability of the ratio of organic carbon to chlorophyll a (C:Chl a) in the sea surface layer (0–1 m). The C:Chl a ratio is an important parameter that reflects the phytoplankton adaptation to abiotic factors. Its maximum variations occurred in September–October 2005 and October 2010 when the highest spatial variability of average light intensity and nitrogen concentration was observed in the upper mixed layer. As a result, the maps of phytoplankton biomass differed from chlorophyll maps. In August 2011, no effect of light or nitrogen on the spatial variability of the C:Chl a ratio was found. Changes in the contribution of dinoflagellates to the total phytoplankton biomass affected the C:Chl a ratio variability, which was two times lower compared to September–October 2005 and October 2010. Also, the spatial distribution of phytoplankton biomass differed from the distribution of chlorophyll a concentration only in some areas of the sea. In May 2013, environmental factors slightly varied across the study area and the spatial variability of the C:Chl a ratio was insignificant. Therefore, the map of phytoplankton biomass indicated similarities with the chlorophyll map.


Data ◽  
2021 ◽  
Vol 6 (5) ◽  
pp. 50
Author(s):  
Luigi Formisano ◽  
Michele Ciriello ◽  
Christophe El-Nakhel ◽  
Stefania De Pascale ◽  
Youssef Rouphael

The growing interest in healthy foods has driven the agricultural sector towards eco-friendly implementation to manage biotic and abiotic factors in protected environments. In this perspective, anti-insect nets are an effective tool for controlling harmful insect populations concomitantly with reducing chemicals’ interference. However, the low porosity of nets necessary to ensure high exclusion efficiency for a designated insect leads to reduced airflow, impacting the productivity and quality attributes of vegetables. The evidence presented in this dataset pertains to the content of total nitrogen, minerals (i.e., NO3, K, PO4, SO4, Ca, Mg, Cl, and Na), and organic acids (i.e., malate and citrate) of zucchini squash (Cucurbita pepo L. cv. Zufolo F1) in leaves and fruits grown with two anti-insect nets with different porosities (Biorete® 50 mesh and Biorete® 50 mesh AirPlus), is and analyzed by the Kjeldahl method and ion chromatography (ICS3000), respectively. Data of total nitrogen concentration, macronutrients, and organic acids provide in-depth information about plants’ physiological response to microclimate changes induced by anti-insect nets.


2016 ◽  
Vol 6 (4) ◽  
pp. 1016-1031 ◽  
Author(s):  
Alan W. Bowsher ◽  
Chase M. Mason ◽  
Eric W. Goolsby ◽  
Lisa A. Donovan

Hydrobiologia ◽  
2021 ◽  
Vol 848 (4) ◽  
pp. 943-960
Author(s):  
Rayane F. Vanderley ◽  
Kemal A. Ger ◽  
Vanessa Becker ◽  
Maria Gabriela T. A. Bezerra ◽  
Renata Panosso

AbstractWhile warming and eutrophication have increased the frequency and magnitude of harmful cyanobacterial blooms globally, the scenario for many eutrophic tropical freshwaters is a perennial year-round bloom. Yet, the drivers of persistent blooms are less understood when conditions such as light, temperature, and nutrients favor cyanobacteria growth year-round, and especially in regions facing recurrent periods of drought. In order to understand the drivers of cyanobacteria dominance, we assessed the abiotic conditions related to the abundance and dominance of the two dominant bloom-forming genera Raphidiopsis and Microcystis, in six shallow, man-made lakes located in the semiarid Northeastern region of Brazil during a prolonged regional drought. Lower water level corresponded to increased phosphorous and nitrogen concentration and, consequently, phytoplankton biomass. Cyanobacterial biomass was also proportional to phosphorus concentrations during year-round blooms. Yet, the two dominant cyanobacterial genera, Raphidiopsis and Microcystis, seldom co-occurred temporally and the switch between them was driven by water transparency. Our results illustrate the effects of drought induced water level reductions on the biomass and composition of cyanobacterial blooms in tropical shallow man-made lakes. Given the ideal year-round conditions (i.e., high light and temperature), droughts may be expected to intensify the risk and multitude of problems associated with eutrophication.


2011 ◽  
Vol 13 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Christiane Roscher ◽  
Michael Scherer-Lorenzen ◽  
Jens Schumacher ◽  
Vicky M. Temperton ◽  
Nina Buchmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document