scholarly journals The Structure of Saproxylic Beetle Assemblages in View of Coarse Woody Debris Resources in Pine Stands of Western Poland

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1558
Author(s):  
Andrzej Mazur ◽  
Radosław Witkowski ◽  
Robert Kuźmiński ◽  
Roman Jaszczak ◽  
Mieczysław Turski ◽  
...  

Background: Resources of dying and dead trees, decaying fragments of stems, stumps and branches, i.e., coarse woody debris (CWD), are an important structural element of biocenoses and are drivers of biodiversity. The aim of this study was to describe assemblages of saproxylic beetles in pine stands of western Poland in view of dead wood resources. We present faunistic (species identity) and quantitative (species and individual counts) data from two types of stands: 1. unmanaged pine stands, in which no trees have been extracted for over 30 years, with processes connected with tree dying and self-thinning of stands being undisturbed, 2. managed pine stands, in which routine tending operations extracting trees are performed in accordance with forest management plans and naturally dying trees are removed in the course of tending and sanitary logging; Methods: Beetles were captured in the years 2013–2014 using window flight traps. Assemblages of saproxylic beetles were assessed based on the indices of dominance, diversity (the Shannon–Weiner index), and species richness (Margalef’s index) as well as the estimated habitat fidelity index, feeding habits, and zoogeographical distribution. Similarity between the assemblages was evaluated applying cluster analysis. Dependence between dead wood resources and the diversity and species richness indices were analysed; Results: A total of 2006 individuals classified to 216 species were captured. Assemblages show considerable similarity on the local scale. Higher values of species diversity indicators were observed in unmanaged stands, in which no sanitation cuttings are performed; Conclusions: The decision to refrain from sanitation logging in pine monocultures results in increased CWD resources, which nevertheless does not lead to a marked increase in the values of biodiversity indicators. Unmanaged stands were characterised by a high share of zoophagous, mycetophagous, and saproxylic species. In contrast, managed stands were characterised by a high share of xylophagous beetles.

2015 ◽  
Vol 76 (4) ◽  
pp. 322-330 ◽  
Author(s):  
Konrad Skwarek ◽  
Szymon Bijak

Abstract Dead wood plays an important role for the biodiversity of forest ecosystems and influences their proper development. This study assessed the amount of coarse woody debris in municipal forests in Warsaw (central Poland). Based on the forest site type, dominant tree species and age class, we stratified all complexes of the Warsaw urban forests in order to allocate 55 sample plots. For these plots, we determined the volume of dead wood including standing dead trees, coarse woody debris and broken branches as well as uprooted trees. We calculated the amount of dead wood in the distinguished site-species-age layers and for individual complexes. The volume of dead matter in municipal forests in Warsaw amounted to 38,761 m3, i.e. 13.7 m3/ha. The obtained results correspond to the current regulations concerning the amount of dead organic matter to be left in forests. Only in the Las Bielański complex (northern Warsaw) volume of dead wood is comparable to the level observed in Polish national parks or nature reserves, which is still far lower than the values found for natural forests. In general, municipal forests in Warsaw stand out positively in terms of dead wood quantity and a high degree of variation in the forms and dimensions of dead wood.


2018 ◽  
Vol 48 (4) ◽  
pp. 399-411 ◽  
Author(s):  
Praveen Kumar ◽  
Han Y.H. Chen ◽  
Sean C. Thomas ◽  
Chander Shahi

Although the importance of coarse woody debris (CWD) to understory species diversity has been recognized, the combined effects of CWD decay and substrate species on abundance and species diversity of epixylic vegetation have received little attention. We sampled a wide range of CWD substrate species and decay classes, as well as forest floors in fire-origin boreal forest stands. Percent cover, species richness, and evenness of epixylic vegetation differed significantly with both CWD decay class and substrate species. Trends in cover, species richness, and evenness differed significantly between nonvascular and vascular taxa. Cover, species richness, and species evenness of nonvascular species were higher on CWD, whereas those of vascular plants were higher on the forest floor. Epixylic species composition also varied significantly with stand ages, overstory compositions, decay classes, substrate species, and their interactions. Our findings highlight strong interactive influences of decay class and substrate species on epixylic plant communities and suggest that conservation of epixylic diversity would require forest managers to maintain a diverse range of CWD decay classes and substrate species. Because stand development and overstory compositions influence CWD decay classes and substrate species, as well as colonization time and environmental conditions in the understory, our results indicate that managed boreal landscapes should consist of a mosaic of different successional stages and a broad suite of overstory types to support diverse understory plant communities.


2007 ◽  
Vol 37 (12) ◽  
pp. 2494-2507 ◽  
Author(s):  
Niklas Franc

For conservation of forest biodiversity, dead wood in the form of logs, snags, or cut high stumps is sometimes left or created when forests are harvested. In Scandinavia, such dead wood usually comes from conifers. For forests in temperate regions, few studies have analysed composition and species richness of beetles using dead wood of oaks ( Quercus spp). In this study in southern Sweden, I examined the occurrence of saproxylic beetles trapped at lying (logs) and standing (snags) dead wood of European oaks ( Quercus robur L. and Quercus petraea (Mattuschka) Liebl.) in 13 oak-rich mixed forests of relatively high conservation value. The assemblage of beetles differed strikingly between the lying and standing dead wood. Traps on lying dead wood, compared to traps on standing dead wood, had more fungivores and fewer primary and secondary wood boring species. Of 94 species tested for individual substrate preferences, 48 showed prevalence for different trap/substrate types. Absolute species richness was significantly higher on logs than snags, but a smaller proportion of the snag substrate or snag beetles may have been sampled. For red-listed beetles, no differences in their species richness were detected among substrates. These results suggest that logs of dead oaks are valuable and that both snags and logs of oak should be retained and, if needed, created in forestry, such that they are continuously available in stands.


2005 ◽  
Vol 35 (6) ◽  
pp. 1502-1506 ◽  
Author(s):  
Asko Lõhmus ◽  
Piret Lõhmus

During the 20th century, large agricultural areas in Eastern Europe became forested after their abandonment. To explore the value of these new forests for biota, we assessed volumes of coarse woody debris (CWD) on random transects in mid-aged (40–75 years old) stands. In mixed and deciduous forests that were not forested in the 1930s, downed tree (log) volumes were about two times lower than in cutover sites. The effect on snag volume depended on site type and was generally nonsignificant. Large-diameter CWD showed similar proportions in the long-term and new forest areas, but large, well-decayed trunks tended to be less frequent in the latter. No reduction of dead wood volume was found in new pine stands, 98% of which had previously been classified as mires (bogs). Hence the origin of mid-aged successional forests had affected their CWD supply (particularly logs) to some extent, but the general scarcity of CWD all over the forest land indicated much larger (at least five-fold) losses due to timber harvesting. We conclude that naturally reforested areas should not be automatically excluded from reserve establishment or other CWD-related conservation programmes.


2021 ◽  
Vol 64 (1) ◽  
pp. 31-60
Author(s):  
Nicolai Olenici ◽  
Ecaterina Fodor

Nature reserves harbour considerable richness and diversity of saproxylic organisms since dead wood is preserved in situ, this being also the case of Voivodeasa beech-spruce-fir forest in North-Eastern Romania, the area investigated under the present research. Flight interception traps were employed to capture insects during a vegetation season with the goal to characterize saproxylic Coleoptera community in terms of diversity and several other structural features. Among the captured insects, the majority pertained to obligate saproxylic species (217 species). However, the unexpected high species richness corresponded to an area with modest representation of deadwood due to previous status of commercial forest. The identified beetles were members of different habitat-guilds depending on what type of substrate they colonized: recently dead wood (23%), decomposed dead wood (41%), wood inhabiting fungi (34%) and treehollow detritus (2%). According to their trophic position, the identified saproxylic beetles pertained to the following guilds: xylophagous (40%), mycetophagous (39%), predatory (14%), and species relying on other food resources. The observed richness corresponded to the case of hyperdiverse communities where sampling never leads to the stabilization of species richness under a realistic sampling scheme. The diversity profiles constructed on Shannon, Gini-Simpson, Berger-Parker and evenness indices for the pooled inventory and for separate samples across the vegetation season indicated the aggregated saproxylic community as highly diverse and highly uneven, with rich representation of rare species, dominated by few abundant species. We assembled four bipartite, unweighted, and undirected networks to approach the temporal changes across the sampling period extended over one vegetation season. The topology of beetles’ community and of the three main trophic guilds (xylophagous, mycetophagous and predatory) networks linked to time sequences are characterized by high connectance, high nestedness and modularity, with the exception of the mycetophagous sub-network not displaying significant modularity. Among the identified species, 13% indicate high degree of naturalness of the Voievodeasa forest. 62 of the identified species are included in the Red List of European Saproxylic Beetles of which five are near threatened (Protaetia fieberi, Cucujus cinnaberinus, Crepidophorus mutilatus, Ceruchus chrysomelinus, Prostomis mandibularis), Ischnodes sanguinolentus is vulnerable and Rhysodes sulcatus is an endangered species. During the study, two Coleoptera species, new for Romanian insect fauna were identified: Denticollis interpositus Roubal, 1941 and Hylis procerulus (Mannerheim 1823).


2010 ◽  
Vol 25 (4) ◽  
pp. 176-180 ◽  
Author(s):  
David Azuma

Abstract Forest Inventory and Analysis data were used to investigate the effects of a severe western spruce budworm outbreak on the dead wood component of forests in 11 counties of eastern Oregon for two time periods. The ownership and the level of damage (as assessed by aerial surveys) affected the resulting down woody material and standing dead trees. The pattern of coarse woody debris with respect to ownership and management intensity remained consistent into the next 10-year period. Harvesting tended to lower the amount of coarse woody debris on private forests. Federally managed forests had more standing dead trees than private lands, with more in the reserved than nonreserved areas. There was a reduction in the number of standing dead trees between the two periods.


2019 ◽  
Vol 65 (No. 10) ◽  
pp. 408-422
Author(s):  
Vahid Etemad ◽  
Mohsen Javanmiri pour ◽  
Zeinab Foladi

In a natural forest, phases of different dynamics are gradually replaced to create sustainability in the stands. Coarse woody debris is among the most significant structural elements of natural stands that perform an influential position in the identification of dynamic phases. Therefore, the focus of this study is on dead wood conditioning as one of the major structural components in determining the various dynamic phases in the northern forests of Iran as part of the temperate forests. For this study, compartment 326 of Gorazbon District was considered as one of the control parcels of Kheyroud Forest. In this parcel, 25 one-hectare sample plots were selected as permanent plots for a long-term forest structure and succession studies. The coarse woody debris by 100% sampling method was measured. The results showed that there are 8 main phases in this area (gap formation, understorey initiation, stem exclusion, volume accumulation, volume degradation, multiple, lighting, old-growth). The extensive forest area (52%) is located in the understorey initiation and stem exclusion phases. The results also showed that the total average volume of snags and logs was 41.5 m<sup>3</sup>·ha<sup>–1</sup>. Furthermore, the mean dead wood volume in decay classes 1, 2, 3 and 4 was 10.33, 12.22, 9.15 and 83.9 m<sup>3</sup>·ha<sup>–1</sup>, respectively. The average frequency of dead trees in the diameter classes smaller than 25 cm, 25–50 cm and in the diameter class more than 50 cm is 25.79, 6.93, and 4.88. The significance analysis results obtained by ANOVA test showed that there is a significant difference between volume, snag and log stock and the shape of dead wood in various dynamic phases. Therefore, in general, dead wood in the forest differs according to habitat, evolutionary stage (dynamic phases), standing volume and species diversity of the tree species.


2013 ◽  
Vol 40 (5) ◽  
pp. 358 ◽  
Author(s):  
T. L. Moore ◽  
L. E. Valentine ◽  
M. D. Craig ◽  
G. E. S. J. Hardy ◽  
P. A. Fleming

Context Large portions of the world’s forests and woodlands are currently affected by declines in canopy condition of dominant tree species; however, the effects of these declines on faunal communities are largely unknown. Eucalyptus wandoo woodlands in the south-west region of Western Australia have demonstrated declines in condition since the early 1990s. Such declines in tree condition can result in reduced understorey vegetation, increased leaf-litter cover and coarse woody debris, potentially altering the habitat and resource available to reptiles. Prescribed fire events, another mechanism of habitat change for reptiles, are a common occurrence in these woodlands. Aims The present research investigated whether reptile communities were influenced by E. wandoo tree condition, and the changes in the habitat associated with E. wandoo decline. Methods Reptile trapping was conducted at 24 E. wandoo-dominated sites (of varying condition) in Dryandra State Forest and Wandoo Conservation Park, Western Australia. Overall, reptile abundance, species richness and individual reptile species abundances (only those species captured in sufficient numbers for analysis) were compared with a range of habitat characteristics that are likely to be altered by changes in E. wandoo tree condition. Key results Overall, higher reptile abundance and species richness were observed at sites with longer time since fire and more site litter cover. There was also a greater abundance and diversity of reptiles at sites where E. wandoo trees exhibited fewer symptoms of tree decline. Similar analyses for the five most common skink species indicated species-specific relationships with tree-condition measures, time since last fire, site litter cover, distance to drift fence from E. wandoo trees, understorey vegetation density and the density of coarse woody debris. Conclusions Abundance and species diversity of the reptile communities in E. wandoo woodlands were strongly related to time since last fire, E. wandoo tree condition and habitat characteristics such as site litter cover and the density of coarse woody debris. Implications Decline in the condition of E. wandoo trees and the fire events in E. wandoo woodlands are both mechanisms of change correlated with reptile habitat and resources. Future management of E. wandoo woodlands may include reducing prescribed fire events in areas demonstrating symptoms of tree decline, to conserve reptile abundance and species richness.


2013 ◽  
Vol 42 (2) ◽  
pp. 169-178 ◽  
Author(s):  
Reda Iršėnaitė ◽  
Ernestas Kutorga

Wood-inhabiting fungi on pedunculate oak (<em>Quercus robur</em>) coarse woody debris (CWD) was investigated in 50 plots of 0.1 ha in oak stands of different ages in Lithuania. In maturing stands (50-120 years) the average volume of oak CWD was 4.7 m<sup>3</sup>/ha, and in mature stands (over 120 years) – 13.9 m3/ha. Both in maturing and mature stands, the greatest fraction of CWD consisted of fallen oak branches (81 % and 84 % respectively), whereas fallen trunks comprised about 10 % of the total units of CWD. In total 1350 records of 203 species (49 ascomycetes and 154 basidiomycetes) were collected during 2 years of investigation. Species richness and abundance increased significantly with the increase of volume and abundance of CWD. Higher species richness was detected in mature stands than in maturing ones. Wood-inhabiting species composition varied greatly at stand scale, and one third of all detected species occurred only in one plot. Red-listed fungi were found only in mature stands. We conclude that, even in managed oak stands, oak CWD maintains a rather diverse species composition of ascomycetes and basidiomycetes. However, the current practice of forestry in Lithuania of removing dying or dead wood of large volume, e.g. standing and fallen trunks, reduce the distribution of highly specialized, usually rare, and endangered fungi.


2003 ◽  
Vol 79 (3) ◽  
pp. 632-644 ◽  
Author(s):  
Bruce J Stewart ◽  
Peter D Neily ◽  
Eugene J Quigley ◽  
Lawrence K Benjamin

A study of four old-growth stands in Nova Scotia was conducted to document the ecological characteristics of these currently rare Acadian forest ecosystems. Stands were selected to represent the two dominant climax forest types, hemlock–red spruce–eastern white pine, and sugar maple–yellow birch–beech. Data include measurements of age structure, species composition, diameter distribution, basal area, height, coarse woody debris, snags, vertical structure, and canopy condition. All stands were determined to be uneven-aged. Old-growth reference ages calculated for the stands ranged from 164 to 214 years. All stands displayed broad diameter distributions that had peak basal area representation in the 40- to 50-cm diameter classes. Volumes of dead wood ranged from 111 to 148 m3/ha in the softwood stands and from 63 to 83m3/ha in the hardwood stands. Dead wood consisted of approximately one-third snags and two thirds downed coarse woody debris. Measurements from the stands were used to evaluate Nova Scotia's recently developed Old Forest Scoring System. Six stand attributes were rated for a maximum score of 100: stand age, primal value, number of large-diameter trees, length of large-diameter dead wood, canopy structure, and understorey structure. Based on the age attribute, three of the four stands were classed as Mature Old Growth and one was very close, indicating that all are in the shifting mosaic stage of late forest succession. The scores for all stands were relatively high, ranging from 75 to 85, as would be expected from some of the best old-growth stands in the province. Key words: old growth, climax, primal, late succession, uneven-aged, scoring, coarse woody debris, age structure, diameter, Acadian forest, northern hardwood, red spruce, eastern hemlock, white pine, sugar maple, yellow birch, American beech


Sign in / Sign up

Export Citation Format

Share Document