scholarly journals Influence of Natural and Anthropogenic Linear Canopy Openings on Forest Structural Patterns Investigated Using LiDAR

Forests ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 540 ◽  
Author(s):  
Udayalakshmi Vepakomma ◽  
Daniel Kneeshaw ◽  
Louis De Grandpré

In much of the commercial boreal forest, dense road networks and energy corridors have been developed to access natural resources with unintended and poorly understood effects on surrounding forest structure. In this study, we compare the effects of anthropogenic and natural linear openings on surrounding forest conditions in black spruce stands (gap fraction, tree and sapling height, and density). Forest structure within a 100 m band around the edges of anthropogenic (roads and power lines), natural linear openings (streams), and a reference black spruce forest was measured by identifying individual stems and canopy gaps on recent high density airborne LiDAR canopy height models. CUSUM curves were used to assess the distance of edge influence. Forests surrounding anthropogenic openings were found to be gappier, less dense, and have smaller trees than those around natural openings. Forests were denser around natural and anthropogenic linear openings than in the reference forest with edge effects observed up to 24–75 m and 18–54 m, respectively, into the forest. A high density of saplings in the gappier forests surrounding anthropogenic openings may eventually lead to a higher forest biomass in the zone area surrounding roads as is currently observed around natural openings.

2004 ◽  
Vol 34 (2) ◽  
pp. 289-302 ◽  
Author(s):  
Karen A Harper ◽  
Daniel Lesieur ◽  
Yves Bergeron ◽  
Pierre Drapeau

We compared structure and composition at forest edges created by wildfire and clear-cutting in black spruce (Picea mariana (Mill.) BSP) dominated boreal forest in northwestern Quebec. Forest structure and plant species composition were sampled along transects perpendicular to eight 3- to 4-year-old fire edges and eight 2- to 5-year-old cut edges. Significance of edge influence was assessed by comparing mean values at different distances from the edge to the range of variation in interior forest. The influence of clearcut edges was minimal, generally extending only 5 m from the edge, and included greater log density and different species composition, compared with interior forest. At fire edges, prominent responses to edge creation included increased snag density and lower moss cover, compared with interior forest, extending up to 40 m into the forest. This initial structural change was likely due to partial burning extending into the forest. Overall, fire edges had more snags and a different species composition than cut edges. Our hypothesis that edge influence is more extensive at fire edges than at cut edges was supported for overstory and understory structure, but not for species composition. We suggest that there is a need for management to consider the cumulative effect of the loss of fire edges on the landscape.


2017 ◽  
Vol 9 (8) ◽  
pp. 771 ◽  
Author(s):  
Yanjun Wang ◽  
Qi Chen ◽  
Lin Liu ◽  
Dunyong Zheng ◽  
Chaokui Li ◽  
...  

1999 ◽  
Vol 29 (1) ◽  
pp. 79-79 ◽  
Author(s):  
Akio TSUCHIYA ◽  
Mario HIRAOKA

Várzea and terra-firme forests in the lower course of the Amazon were compared in terms of forest structure, wood volume increments and forest biomass. The wood volume of várzea forests was smaller than that of terra-firme forests, particularly when severe human intervention such as the cultivation of açaí palm occurred. The difference was even greater in the forest weight comparison because of the lower wood density of várzea trees. These trees are not directly influenced by water stress during the dry season, while late wood with a high density is formed in the terra-firme trees. The annual forest disappearance area due to firewood for tile factories was estimated to be about 276 ha on the island investigated, which had an area of 36,200 ha. Assuming that the forests are rotatively cultivated every 25 to 30 years, the total deforestation area is 6,870-6,948 ha in 25 years and 8,244~8,337 ha in 30 years. This result means that the balance between forest biomass and utilization is not in crisis, however, this balance might be lost as long as substitutive energy such as electricity is not supplied.


1978 ◽  
Vol 54 (6) ◽  
pp. 296-297 ◽  
Author(s):  
Douglas A. Mead

Height growth of eastern larch (Larix laricina (Du Roi) K. Koch) and black spruce (Picea mariana (Mill.) B.S.P.) was determined using standard stem analysis methods on trees from two sites in northwestern Ontario. The data were obtained from mixed larch-spruce stands which were relatively undisturbed. The larch exhibited substantially better height growth than the spruce through age 65.


2017 ◽  
Vol 32 (9) ◽  
pp. 1881-1894 ◽  
Author(s):  
Stephan Getzin ◽  
Rico Fischer ◽  
Nikolai Knapp ◽  
Andreas Huth

2015 ◽  
Vol 12 (23) ◽  
pp. 19043-19072 ◽  
Author(s):  
D. C. Morton ◽  
J. Rubio ◽  
B. D. Cook ◽  
J.-P. Gastellu-Etchegorry ◽  
M. Longo ◽  
...  

Abstract. The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART) model to simulate leaf absorption of photosynthetically active radiation (lAPAR) for an Amazon forest. The 3-D model scene was developed from airborne lidar data, and local measurements of leaf reflectance, aerosols, and PAR were used to model lAPAR under direct and diffuse illumination conditions. Simulated lAPAR under clear sky and cloudy conditions was corrected for light saturation effects to estimate light utilization, the fraction of lAPAR available for photosynthesis. Although the fraction of incoming PAR absorbed by leaves was consistent throughout the year (0.80–0.82), light utilization varied seasonally (0.67–0.74), with minimum values during the Amazon dry season. Shadowing and light saturation effects moderated potential gains in forest productivity from increasing PAR during dry season months when the diffuse fraction from clouds and aerosols was low. Comparisons between DART and other models highlighted the role of 3-D forest structure to account for seasonal changes in light utilization. Our findings highlight how directional illumination and forest 3-D structure combine to influence diurnal and seasonal variability in light utilization, independent of further changes in leaf area, leaf age, or environmental controls on canopy photosynthesis. Changing illumination geometry constitutes an alternative biophysical explanation for observed seasonality in Amazon forest productivity without changes in canopy phenology.


2017 ◽  
Vol 07 (02) ◽  
pp. 255-269 ◽  
Author(s):  
Faith Kagwiria Mutwiri ◽  
Patroba Achola Odera ◽  
Mwangi James Kinyanjui

Sign in / Sign up

Export Citation Format

Share Document