scholarly journals Land Use and Landscape Pattern Changes in the Sanjiang Plain, Northeast China

Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 637 ◽  
Author(s):  
Xiaohui Liu ◽  
Yu An ◽  
Guihua Dong ◽  
Ming Jiang

Agricultural reclamation has been the major threat to land use changes in the Sanjiang Plain, Northeast China, over the past decades. However, spatial and temporal dynamics of land use and landscape, especially in the recent years, are not well known. In this study, land use and landscape pattern changes from 1982 to 2015 were analyzed using remote sensing data by splitting the period into five periods. The results indicated that the largest reduction of forestland area was 648.70 km2 during 1995–2000, and the relative change was −1.84%. The converted area of forestlands to dry farmlands in this period was about 90% of the total reduced forestland area. Marshland areas decreased remarkably by 63.29% and paddy fields increased by 1.78 times from 1982 to 2015. Paddy fields experienced large conversion into dry farmlands during 2005–2010 (1788.57 km2), followed by a reverse conversion from 1995 to 2000 (2379.60 km2). The difference of relative change revealed development speed of paddy field was faster than that of dry farmlands among the five periods. Landscape pattern was analyzed using class- and landscape-level metrics. The landscape diversity index and number of patches increased, which showed that the degrees of the forestland, marshland, and cropland landscape fragmentation were aggravated. Our study provides the effective means of land use dynamic monitoring and evaluation at the landscape level for the existing forestlands and marshlands protection.

Author(s):  
Luoman Pu ◽  
Jiuchun Yang ◽  
Lingxue Yu ◽  
Changsheng Xiong ◽  
Fengqin Yan ◽  
...  

Crop potential yields in cropland are the essential reflection of the utilization of cropland resources. The changes of the quantity, quality, and spatial distribution of cropland will directly affect the crop potential yields, so it is very crucial to simulate future cropland distribution and predict crop potential yields to ensure the future food security. In the present study, the Cellular Automata (CA)-Markov model was employed to simulate land-use changes in Northeast China during 2015–2050. Then, the Global Agro-ecological Zones (GAEZ) model was used to predict maize potential yields in Northeast China in 2050, and the spatio-temporal changes of maize potential yields during 2015–2050 were explored. The results were the following. (1) The woodland and grassland decreased by 5.13 million ha and 1.74 million ha respectively in Northeast China from 2015 to 2050, which were mainly converted into unused land. Most of the dryland was converted to paddy field and built-up land. (2) In 2050, the total maize potential production and average potential yield in Northeast China were 218.09 million tonnes and 6880.59 kg/ha. Thirteen prefecture-level cities had maize potential production of more than 7 million tonnes, and 11 cities had maize potential yields of more than 8000 kg/ha. (3) During 2015–2050, the total maize potential production and average yield decreased by around 23 million tonnes and 700 kg/ha in Northeast China, respectively. (4) The maize potential production increased in 15 cities located in the plain areas over the 35 years. The potential yields increased in only nine cities, which were mainly located in the Sanjiang Plain and the southeastern regions. The results highlight the importance of coping with the future land-use changes actively, maintaining the balance of farmland occupation and compensation, improving the cropland quality, and ensuring food security in Northeast China.


2019 ◽  
Vol 11 (24) ◽  
pp. 2915
Author(s):  
Lingxue Yu ◽  
Tingxiang Liu

Land use and land cover change (LUCC) has been increasingly recognized as having important effects on climate systems. Paddy fields, one kind of artificial wetland, have seen a significant increase in the Sanjiang Plain, China since 2000 and have become the most typical LUCC at the regional scale. Against this background, in this paper, we discuss the effects of this artificial wetland increase on surface temperature, in addition to its driving mechanisms. Firstly, the spatiotemporal variations of land surface temperature (LST) and its two driving variables (albedo and latent heat flux (LE)) in the Sanjiang Plain are analyzed and assessed based on remote sensing observation information from 2001 to 2015. Our results from both spatial distribution difference and time series analysis show that paddy field expansion led to day-time cooling and night-time warming over the study area. However, the LST changes show different characteristics and magnitudes in the spring (May to June) compared to the other months of the growing season (July to September). The daytime cooling trend is found to be −0.3842 K/year and the warming trend at night 0.1988 K/year during the period 2001 to 2015, resulting in an overall cooling effect in May and June. In July–September, the LST changes have the same sign but a smaller magnitude, with a −0.0686 K/year temperature trend seen for the day-time and a 0.0569 K/year increase for the night-time. As a consequence, a pronounced decrease in the diurnal temperature range is detected in the growing season, especially in spring. Furthermore, albedo and LE are demonstrated to be very sensitive to land use changes, especially in the earlier periods of the growing season. Correlation analysis between LST and albedo and LE also indicates the dominant role played by evapotranspiration in paddy fields in regulating local temperature.


2015 ◽  
Vol 75 ◽  
pp. 16-23 ◽  
Author(s):  
Xiaoyan Zhu ◽  
Changchun Song ◽  
Christopher Martin Swarzenski ◽  
Yuedong Guo ◽  
Xinhou Zhang ◽  
...  

2012 ◽  
Vol 9 (6) ◽  
pp. 7919-7945
Author(s):  
L. L. Wang ◽  
C. C. Song ◽  
G. S. Yang

Abstract. Dissolved organic carbon (DOC) is a significant component of carbon and nutrient cycling in fluvial ecosystems. Natural wetlands, as important DOC sources for river and ocean ecosystems, have experienced extensive natural and anthropogenic disturbances such as climate change, hydrological variations and land use change in recent years. In this study, we examined the concentrations and spectroscopic characteristics of DOC in surface runoff from contrasting wetlands along the lower Amur River Basin in the Sanjiang Plain, Northeastern China. Surface runoff from seven sites (two natural phialiform wetlands, three natural riparian wetland, one degraded wetland, and one artificial wetland i.e. rice paddy) were monitored during the growing seasons of 2009 and 2010. Surface runoff from the natural wetland sites exhibited a wide range of DOC concentrations (10.06–48.73 mg l−1) during the two-year sampling period. The specific ultraviolet absorbance (SUVA) and color values of DOC in surface runoff were also highly variable at different natural wetland sites. Our analysis also found that DOC values were significantly lower in the surface runoff at the artificial wetland site compared with those from surface runoff at the five natural wetland sites and one degraded wetland site (P < 0.01). The colour per carbon unit (C / C) ratio in surface runoff at the artificial wetland site was one to three times lower, while the E4 / E6 ratio (Abs465 / Abs665) was reduced by 42.07% to 55.36%, compared to those from runoff water at the five natural wetland sites. The C / C ratios in surface runoff at the natural wetland sites were higher than that from surface runoff at the degraded wetland, which in turn has greater values than that from surface runoff at the artificial wetland site. Meanwhile, the E4 / E6 ratio in the surface runoff from the artificial wetland was lower compared to that in surface runoff at the degraded wetland site (P < 0.05). This implies that disturbance to DOC concentrations and spectroscopic characteristics in surface runoff is stronger from natural wetland conversion to rice paddy land than that from wetland degradation. The dataset from this study can provide insightful points for understanding the underlying mechanisms of aquatic DOC dynamics from wetland ecosystems, and improve land use policy and management strategies in the future.


Sign in / Sign up

Export Citation Format

Share Document