scholarly journals Selection of Wine Saccharomyces cerevisiae Strains and Their Screening for the Adsorption Activity of Pigments, Phenolics and Ochratoxin A

Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 80
Author(s):  
Andrea Pulvirenti ◽  
Luciana De Vero ◽  
Giuseppe Blaiotta ◽  
Rossana Sidari ◽  
Giovanna Iosca ◽  
...  

Ochratoxin A is a dangerous mycotoxin present in wines and is considered the principal safety hazard in the winemaking process. Several authors have investigated the ochratoxin A adsorption ability of Saccharomyces cerevisiae yeasts, and specifically selected strains for this desired trait. In the present work, a huge selection of wine yeasts was done starting from Portuguese, Spanish and Italian fermenting musts of different cultivars. Firstly, 150 isolates were collected, and 99 non-redundant S. cerevisiae strains were identified. Then, the strains were screened following a multi-step approach in order to select those having primary oenological traits, mainly (a) good fermentation performance, (b) low production of H2S and (c) low production of acetic acid. The preselected strains were further investigated for their adsorption activity of pigments, phenolic compounds and ochratoxin A. Finally, 10 strains showed the desired features. The goal of this work was to select the strains capable of absorbing ochratoxin A but not pigments and phenolic compounds in order to improve and valorise both the quality and safety of red wines. The selected strains are considered good candidates for wine starters, moreover, they can be exploited to obtain a further enhancement of the specific adsorption/non-adsorption activity by applying a yeast breeding approach.

2021 ◽  
Vol 60 (2) ◽  
Author(s):  
Bárbara Teodora Andrade Koelher ◽  
Soraya Maria Moreira de Souza ◽  
Andréa Miura da Costa ◽  
Elizama Aguiar-Oliveira

Research background. Cocoa honey (CH) and cocoa pulp (CP) are both fruit pulps highly appreciated but, until now, CH is less processed than CP. In this work, it was investigated the applicability of strains of S. cerevisiae to ferment CH complemented with CP, to obtain fruit wines and improve CH commercialization. Experimental approach. The selection of a strain, previously isolated from cachaçaria distilleries in Brazil, took place based on its fermentation performance. The conditions for fermentation with S. cerevisiae L63 were then studied in relation to: volumetric proportion (φCH) of CH (complemented with CP), sucrose addition (γsuc), temperature (T) and inoculum size (No). The best conditions were applied in order to obtain fermentation profiles. Results and conclusions. S. cerevisiae L63 (No=107–108 cell/mL) is capable to ferment φCH of 90 and 80 % (V/V) for 24 or 48 h with γsuc of 50 and 100 g/L at T=28–30 °C resulting in wines with ethanol contents from 8 to 14 % (V/V). Additionally, the φCH=90 % (V/V) wine resulted in the lowest residual sugar concentration (<35 g/L) than the φCH=80 % (V/V) wine (~79 g/L) which could be classified as a sweet wine. In general, S. cerevisiae L63 resulted in a similar fermentation performance than a commercial strain tested, indicating its potential for fruit pulp fermentation. Novelty and scientific contribution. Therefore, S. cerevisiae L63 is capable to ferment CH complemented with CP to produce fruit wines with good commercial potentials that may also benefit small cocoa producers by presenting a product with greater added value.


2022 ◽  
Vol 36 (1) ◽  
pp. 22-37
Author(s):  
Andrea Caridi ◽  
Rossana Sidari ◽  
Andrea Pulvirenti ◽  
Giuseppe Blaiotta ◽  
Alberto Ritieni

2014 ◽  
Vol 77 (7) ◽  
pp. 1168-1177 ◽  
Author(s):  
LEONARDO PETRUZZI ◽  
ANTONIO BEVILACQUA ◽  
MARIA ROSARIA CORBO ◽  
CARMELA GAROFALO ◽  
ANTONIETTA BAIANO ◽  
...  

Over the last few years, the selection of autochthonous strains of Saccharomyces cerevisiae as wine starters has been studied; however, researchers have not focused on the ability to remove ochratoxin A (OTA) as a possible trait to use in oenological characterization. In this article, a polyphasic approach, including yeast genotyping, evaluation of phenotypic traits, and fermentative performance in a model system (temperature, 25 and 30°C; sugar level, 200 and 250 g liter−1), was proposed as a suitable approach to select wine starters of S. cerevisiae from 30 autochthonous isolates from Uva di Troia cv., a red wine grape variety grown in the Apulian region (Southern Italy). The ability to remove OTA, a desirable trait to improve the safety of wine, was also assessed using enzyme-linked immunosorbent assay. The isolates, identified by PCR–restriction fragment length polymorphism analysis of the internal transcribed spacer region and DNA sequencing, were differentiated at strain level through the amplification of the interdelta region; 11 biotypes (I to XI) were identified and further studied. Four biotypes (II, III, V, VIII) were able to reduce OTA, with the rate of toxin removal from the medium (0.6 to 42.8%, wt/vol) dependent upon the strain and the temperature, and biotypes II and VIII were promising in terms of ethanol, glycerol, and volatile acidity production, as well as for their enzymatic and stress resistance characteristics. For the first time, the ability of S. cerevisiae to remove OTA during alcoholic fermentation was used as an additional trait in the yeast-selection program; the results could have application for evaluating the potential of autochthonous S. cerevisiae strains as starter cultures for the production of typical wines with improved quality and safety.


2021 ◽  
Author(s):  
A. Caridi

Abstract Phenolic compounds provide important quality attributes to red wines interacting with the organoleptic impact of wines. Yeast mannoproteins can interact with grape phenolic compounds, responsible for colour and antioxidant activity of wines. The aim of this work was to perform oenological characterisation and specific selection of Calabrian strains of Saccharomyces sensu stricto. Among the considered traits, the aptitude of the yeast to preserve grape pigments and colour intensity was included. Among the best six yeast strains – Sc2731, Sc2742, Sc2756, Sc2773, Sc2774, and Sc2823 – strain Sc2742 exhibits the highest Folin–Ciocalteu index and strain Sc2774 the highest colour intensity. These two selected yeasts may be used as starter for the production of red wines in order to preserve grape pigments and colour intensity.


2020 ◽  
Vol 34 (4) ◽  
pp. 352-370
Author(s):  
Andrea Caridi ◽  
Rossana Sidari ◽  
Andrea Pulvirenti ◽  
Giuseppe Blaiotta

2007 ◽  
Vol 73 (8) ◽  
pp. 2432-2439 ◽  
Author(s):  
Carole Guillaume ◽  
Pierre Delobel ◽  
Jean-Marie Sablayrolles ◽  
Bruno Blondin

ABSTRACT Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Δ strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.


2013 ◽  
Vol 29 (9) ◽  
pp. 1537-1549 ◽  
Author(s):  
Bárbara Mercedes Bravo-Ferrada ◽  
Axel Hollmann ◽  
Lucrecia Delfederico ◽  
Danay Valdés La Hens ◽  
Adriana Caballero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document