Selection of Autochthonous Saccharomyces cerevisiae Strains as Wine Starters Using a Polyphasic Approach and Ochratoxin A Removal

2014 ◽  
Vol 77 (7) ◽  
pp. 1168-1177 ◽  
Author(s):  
LEONARDO PETRUZZI ◽  
ANTONIO BEVILACQUA ◽  
MARIA ROSARIA CORBO ◽  
CARMELA GAROFALO ◽  
ANTONIETTA BAIANO ◽  
...  

Over the last few years, the selection of autochthonous strains of Saccharomyces cerevisiae as wine starters has been studied; however, researchers have not focused on the ability to remove ochratoxin A (OTA) as a possible trait to use in oenological characterization. In this article, a polyphasic approach, including yeast genotyping, evaluation of phenotypic traits, and fermentative performance in a model system (temperature, 25 and 30°C; sugar level, 200 and 250 g liter−1), was proposed as a suitable approach to select wine starters of S. cerevisiae from 30 autochthonous isolates from Uva di Troia cv., a red wine grape variety grown in the Apulian region (Southern Italy). The ability to remove OTA, a desirable trait to improve the safety of wine, was also assessed using enzyme-linked immunosorbent assay. The isolates, identified by PCR–restriction fragment length polymorphism analysis of the internal transcribed spacer region and DNA sequencing, were differentiated at strain level through the amplification of the interdelta region; 11 biotypes (I to XI) were identified and further studied. Four biotypes (II, III, V, VIII) were able to reduce OTA, with the rate of toxin removal from the medium (0.6 to 42.8%, wt/vol) dependent upon the strain and the temperature, and biotypes II and VIII were promising in terms of ethanol, glycerol, and volatile acidity production, as well as for their enzymatic and stress resistance characteristics. For the first time, the ability of S. cerevisiae to remove OTA during alcoholic fermentation was used as an additional trait in the yeast-selection program; the results could have application for evaluating the potential of autochthonous S. cerevisiae strains as starter cultures for the production of typical wines with improved quality and safety.

2018 ◽  
Vol 84 (16) ◽  
Author(s):  
Vasileios Englezos ◽  
Luca Cocolin ◽  
Kalliopi Rantsiou ◽  
Anne Ortiz-Julien ◽  
Audrey Bloem ◽  
...  

ABSTRACTOver the last few years, the potential of non-Saccharomycesyeasts to improve the sensory quality of wine has been well recognized. In particular, the use ofStarmerella bacillarisin mixed fermentations withSaccharomyces cerevisiaewas reported as an appropriate way to enhance glycerol formation and reduce ethanol production. However, during sequential fermentation, many factors, such as the inoculation timing, strain combination, and physical and biochemical interactions, can affect yeast growth, the fermentation process, and/or metabolite synthesis. Among them, the availability of yeast-assimilable nitrogen (YAN), due to its role in the control of growth and fermentation, has been identified as a key parameter. Consequently, a comprehensive understanding of the metabolic specificities and the nitrogen requirements would be valuable to better exploit the potential ofStarm. bacillarisduring wine fermentation. In this study, marked differences in the consumption of the total and individual nitrogen sources were registered between the two species, while the twoStarm. bacillarisstrains generally behaved uniformly.Starm. bacillarisstrains are differentiated by their preferential uptake of ammonium compared with amino acids that are poorly assimilated or even produced (alanine). Otherwise, the non-Saccharomycesyeast exhibits low activity through the acetaldehyde pathway, which triggers an important redistribution of fluxes through the central carbon metabolic network. In particular, the formation of metabolites deriving from the two glycolytic intermediates glyceraldehyde-3-phosphate and pyruvate is substantially increased during fermentations byStarm. bacillaris. This knowledge will be useful to better control the fermentation process in mixed fermentation withStarm. bacillarisandS. cerevisiae.IMPORTANCEMixed fermentations using a controlled inoculation ofStarmerella bacillarisandSaccharomyces cerevisiaestarter cultures represent a feasible way to modulate wine composition that takes advantage of both the phenotypic specificities of the non-Saccharomycesstrain and the ability ofS. cerevisiaeto complete wine fermentation. However, according to the composition of grape juices, the consumption byStarm. bacillarisof nutrients, in particular of nitrogen sources, during the first stages of the process may result in depletions that further limit the growth ofS. cerevisiaeand lead to stuck or sluggish fermentations. Consequently, understanding the preferences of non-Saccharomycesyeasts for the nitrogen sources available in grape must together with their phenotypic specificities is essential for an efficient implementation of sequential wine fermentations withStarm. bacillarisandS. cerevisiaespecies. The results of our study demonstrate a clear preference for ammonium compared to amino acids for the non-Saccharomycesspecies. This finding underlines the importance of nitrogen sources, which modulate the functional characteristics of inoculated yeast strains to better control the fermentation process and product quality.


2009 ◽  
Vol 55 (3) ◽  
pp. 326-332 ◽  
Author(s):  
Andrea Pulvirenti ◽  
Sandra Rainieri ◽  
Silvio Boveri ◽  
Paolo Giudici

We propose an efficient and time-saving strategy for starter culture selection. Our approach is based on the accomplishment of 3 phases: (i) the selection of yeast strains dominating spontaneous fermentations, (ii) the selection among the dominant strains of those showing the best technological characteristics, and (iii) the final selection among good technological strains of those showing the desired qualitative traits. We applied this approach to wine fermentations, even though the same strategy has the potential to be employed for the selection of any type of starter culture. We isolated and identified yeast strains at the mid- and final stages of 6 spontaneous fermentations carried out in 3 different Spanish wineries. We identified all strains as Saccharomyces cerevisiae by restriction fragment length polymorphism of the ribosomal DNA internal transcribed spacer region, and subsequently distinguished each strain by analyzing the polymorphism of the inter-δ regions. Strains that were detected both at the mid- and final stages of the fermentation were considered dominant. Four dominant strains were finally selected and tested in pilot-scale fermentation, and their performance was compared with that of a commercial wine strain. All dominant strains showed good fitness and resulted suitable to be employed as starter cultures. One of the dominant strains isolated in this study is currently commercialized.


Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 80
Author(s):  
Andrea Pulvirenti ◽  
Luciana De Vero ◽  
Giuseppe Blaiotta ◽  
Rossana Sidari ◽  
Giovanna Iosca ◽  
...  

Ochratoxin A is a dangerous mycotoxin present in wines and is considered the principal safety hazard in the winemaking process. Several authors have investigated the ochratoxin A adsorption ability of Saccharomyces cerevisiae yeasts, and specifically selected strains for this desired trait. In the present work, a huge selection of wine yeasts was done starting from Portuguese, Spanish and Italian fermenting musts of different cultivars. Firstly, 150 isolates were collected, and 99 non-redundant S. cerevisiae strains were identified. Then, the strains were screened following a multi-step approach in order to select those having primary oenological traits, mainly (a) good fermentation performance, (b) low production of H2S and (c) low production of acetic acid. The preselected strains were further investigated for their adsorption activity of pigments, phenolic compounds and ochratoxin A. Finally, 10 strains showed the desired features. The goal of this work was to select the strains capable of absorbing ochratoxin A but not pigments and phenolic compounds in order to improve and valorise both the quality and safety of red wines. The selected strains are considered good candidates for wine starters, moreover, they can be exploited to obtain a further enhancement of the specific adsorption/non-adsorption activity by applying a yeast breeding approach.


OENO One ◽  
2021 ◽  
Vol 55 (2) ◽  
pp. 209-225
Author(s):  
Michell Williams ◽  
Wesaal Khan ◽  
Nombasa Ntushelo ◽  
Rodney Hart

Wine yeast starter cultures differ in their ability to release aroma-enhancing metabolites associated with typical varietal wines. Therefore, this study investigated an indigenous Saccharomyces cerevisiae isolated from Paarl regional Shiraz grapes for the release of, amongst others, volatile thiols (aroma compounds traditionally associated with white cultivars, especially Sauvignon blanc) during the 2016 and 2017 vintages using Shiraz grape must. Chemical analyses of final wines showed that the indigenous strain i.e., NI6 produced Shiraz wines lower volatile acidity (VA) and acetic acid concentrations than wines produced with reference strains i.e., WE372 and MERIT, respectively. This was further supported by descriptive sensory evaluations of wines, as NI6 wines had typical Shiraz varietal aromas and flavours, i.e.,“berry”, “jammy”, “smoky” and “spicy and peppery”. This yeast strain also produced wines with more 3-mercapto-1-hexanol (3MH), a volatile thiol that imparts black currant aromas in red wines, than both red wine reference strains in 2016. Both red wine reference strains, however, produced red wines with higher ester compounds (imparts “fruity” aroma) concentrations than strain NI6. Nonetheless, the ability of NI6 to consistently release volatile thiols during both vintages is advantageous for Shiraz wine typicity. Overall, this study showed that wines with a positive correlation with black and/or fruits aromas and flavours also had volatile thiol levels above its sensory detection thresholds, which indicates that ester compounds are not solely responsible for Shiraz wine fruity aromas and flavours as was traditionally reported.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 99
Author(s):  
Simona Guerrini ◽  
Damiano Barbato ◽  
Lorenzo Guerrini ◽  
Eleonora Mari ◽  
Giacomo Buscioni ◽  
...  

The inoculation of grape juice with Saccharomyces cerevisiae strains selected from indigenous yeast populations can be a suitable tool to control alcoholic fermentation, contributing to producing wines with typical flavor and aroma and, hence, the demand for native starter cultures is increasing. However, since low amounts of indigenous yeast biomasses are usually required for local winemaking, the industrial production of these yeasts can be expensive. Therefore, in this study, after selecting an indigenous S. cerevisiae strain based on relevant oenological and technological features, a pilot-plant for easy and rapid production of fresh yeast biomass directly in a winery located in Tuscany, was exploited. The selected yeast strain was used as a starter to carry out 25 and 100 hL fermentations and its enological performance was compared with that of the commercial starter normally used in the winery. Chemical and sensory analysis of the resulting wines showed that they differentiated according to the used yeast strain, with the wines produced by the indigenous S. cerevisiae strain being characterized by a distinctive aromatic and sensory profile. In conclusion, the pilot-plant effectively resulted in producing fresh yeast starter cultures in the winery to be successfully used to carry out alcoholic fermentations.


Author(s):  
Runze Li ◽  
Rebecca C Deed

Abstract It is standard practice to ferment white wines at low temperatures (10-18 °C). However, low temperatures increase fermentation duration and risk of problem ferments, leading to significant costs. The lag duration at fermentation initiation is heavily impacted by temperature; therefore, identification of Saccharomyces cerevisiae genes influencing fermentation kinetics is of interest for winemaking. We selected 28 S. cerevisiae BY4743 single deletants, from a prior list of open reading frames (ORFs) mapped to quantitative trait loci (QTLs) on chromosomes VII and XIII, influencing the duration of fermentative lag time. Five BY4743 deletants, Δapt1, Δcgi121, Δclb6, Δrps17a, and Δvma21, differed significantly in their fermentative lag duration compared to BY4743 in synthetic grape must (SGM) at 15 °C, over 72 h. Fermentation at 12.5 °C for 528 h confirmed the longer lag times of BY4743 Δcgi121, Δrps17a, and Δvma21. These three candidate ORFs were deleted in S. cerevisiae RM11-1a and S288C to perform single reciprocal hemizygosity analysis (RHA). RHA hybrids and single deletants of RM11-1a and S288C were fermented at 12.5 °C in SGM and lag time measurements confirmed that the S288C allele of CGI121 on chromosome XIII, encoding a component of the EKC/KEOPS complex, increased fermentative lag phase duration. Nucleotide sequences of RM11-1a and S288C CGI121 alleles differed by only one synonymous nucleotide, suggesting that intron splicing, codon bias, or positional effects might be responsible for the impact on lag phase duration. This research demonstrates a new role of CGI121 and highlights the applicability of QTL analysis for investigating complex phenotypic traits in yeast.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 344
Author(s):  
Gilson Celso Albuquerque Chagas Junior ◽  
Nelson Rosa Ferreira ◽  
Eloisa Helena de Aguiar Andrade ◽  
Lidiane Diniz do Nascimento ◽  
Francilia Campos de Siqueira ◽  
...  

This study aimed to identify the volatile compounds in the fermented and dried cocoa beans conducted with three distinct inoculants of yeast species due to their high fermentative capacity: Saccharomyces cerevisiae, Pichia kudriavzevii, the mixture in equal proportions 1:1 of both species, and a control fermentation (with no inoculum application). Three starter cultures of yeasts, previously isolated and identified in cocoa fermentation in the municipality of Tomé-Açu, Pará state, Brazil. The seeds with pulp were removed manually and placed in wooden boxes for the fermentation process that lasted from 6 to 7 days. On the last day of fermentation, the almonds were packaged properly and placed to dry (36 °C), followed by preparation for the analysis of volatile compounds by GC-MS technique. In addition to the control fermentation, a high capacity for the formation of desirable compounds in chocolate by the inoculants with P. kudriavzevii was observed, which was confirmed through multivariate analyses, classifying these almonds with the highest content of aldehydes, esters, ketones and alcohols and low concentration of off-flavours. We conclude that the addition of mixed culture starter can be an excellent alternative for cocoa producers, suggesting obtaining cocoa beans with desirable characteristics for chocolate production, as well as creating a product identity for the producing region.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 724
Author(s):  
Miguel L. Sousa-Dias ◽  
Vanessa Branco Paula ◽  
Luís G. Dias ◽  
Letícia M. Estevinho

This work studied the production of mead using second category honey and the immobilized cells of Saccharomyces cerevisiae in sodium alginate, with concentrations of 2% and 4%, and their reuse in five successive fermentations. The immobilized cells with 4% alginate beads were mechanically more stable and able to allow a greater number of reuses, making the process more economical. The fermentation’s consumption of sugars with free cells (control) and immobilized cells showed a similar profile, being completed close to 72 h, while the first use of immobilized cells finished at 96 h. The immobilized cells did not significantly influence some oenological parameters, such as the yield of the consumed sugars/ethanol, the alcohol content, the pH and the total acidity. There was a slight increase in the volatile acidity and a decrease in the production of SO2. The alginate concentrations did not significantly influence either the parameters used to monitor the fermentation process or the characteristics of the mead. Mead fermentations with immobilized cells showed the release of cells into the wort due to the disintegration of the beads, indicating that the matrix used for the yeast’s immobilization should be optimized, considering the mead production medium.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 599
Author(s):  
Miguel A. Gutierrez-Reinoso ◽  
Pedro M. Aponte ◽  
Manuel Garcia-Herreros

Genomics comprises a set of current and valuable technologies implemented as selection tools in dairy cattle commercial breeding programs. The intensive progeny testing for production and reproductive traits based on genomic breeding values (GEBVs) has been crucial to increasing dairy cattle productivity. The knowledge of key genes and haplotypes, including their regulation mechanisms, as markers for productivity traits, may improve the strategies on the present and future for dairy cattle selection. Genome-wide association studies (GWAS) such as quantitative trait loci (QTL), single nucleotide polymorphisms (SNPs), or single-step genomic best linear unbiased prediction (ssGBLUP) methods have already been included in global dairy programs for the estimation of marker-assisted selection-derived effects. The increase in genetic progress based on genomic predicting accuracy has also contributed to the understanding of genetic effects in dairy cattle offspring. However, the crossing within inbred-lines critically increased homozygosis with accumulated negative effects of inbreeding like a decline in reproductive performance. Thus, inaccurate-biased estimations based on empirical-conventional models of dairy production systems face an increased risk of providing suboptimal results derived from errors in the selection of candidates of high genetic merit-based just on low-heritability phenotypic traits. This extends the generation intervals and increases costs due to the significant reduction of genetic gains. The remarkable progress of genomic prediction increases the accurate selection of superior candidates. The scope of the present review is to summarize and discuss the advances and challenges of genomic tools for dairy cattle selection for optimizing breeding programs and controlling negative inbreeding depression effects on productivity and consequently, achieving economic-effective advances in food production efficiency. Particular attention is given to the potential genomic selection-derived results to facilitate precision management on modern dairy farms, including an overview of novel genome editing methodologies as perspectives toward the future.


Sign in / Sign up

Export Citation Format

Share Document