scholarly journals Yeast Metabolism and Its Exploitation in Emerging Winemaking Trends: From Sulfite Tolerance to Sulfite Reduction

Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Giacomo Zara ◽  
Tiziana Nardi

Sulfite is widely used as a preservative in foods and beverages for its antimicrobial and antioxidant activities, particularly in winemaking where SO2 is frequently added. Thus, sulfite resistance mechanisms have been extensively studied in the fermenting yeast Saccharomyces cerevisiae. Nevertheless, in recent years, a negative perception has developed towards sulfites in wine, because of human health and environmental concerns. Increasing consumer demand for wines with low SO2 content is pushing the winemaking sector to develop new practices in order to reduce sulfite content in wine, including the use of physical and chemical alternatives to SO2, and the exploitation of microbial resources to the same purpose. For this reason, the formation of sulfur-containing compounds by wine yeast has become a crucial point of research during the last decades. In this context, the aim of this review is to examine the main mechanisms weaponized by Saccharomyces cerevisiae for coping with sulfite, with a particular emphasis on the production of sulfite and glutathione, sulfite detoxification through membrane efflux (together with the genetic determinants thereof), and production of SO2-binding compounds.

Microbiology ◽  
2010 ◽  
Vol 156 (6) ◽  
pp. 1686-1696 ◽  
Author(s):  
Tiziana Nardi ◽  
Viviana Corich ◽  
Alessio Giacomini ◽  
Bruno Blondin

Sulphite is widely used as a preservative in foods and beverages for its antimicrobial and antioxidant activities, particularly in winemaking where SO2 is frequently added. Thus, sulphite resistance mechanisms have been extensively studied in the fermenting yeast Saccharomyces cerevisiae. Sulphite detoxification, involving a plasma membrane protein encoded by the SSU1 gene, is the most efficient resistance mechanism in S. cerevisiae. In this study, we characterized the unusual expression pattern of SSU1 in the wine strain 71B. We provide, for the first time, evidence of SSU1 induction by sulphite. The study of SSU1 expression during fermentation and in different growth conditions showed that sulphite is the main regulator of SSU1 expression, explaining its specific pattern. Combining analyses of gene expression and growth behaviour in response to sulphite, we found that 71B displayed unique behavioural patterns in response to sulphite pre-adaptation that may be explained by changes in SSU1 expression. Examination of the genomic organization of the SSU1 locus and sequencing of the region revealed three different alleles in 71B, two of which corresponded to translocated VIII–XVI forms. The lack of differences between promoter regions suggests that this inducible SSU1 expression pattern is due to modification of regulatory/signalling pathways.


2007 ◽  
Vol 73 (8) ◽  
pp. 2432-2439 ◽  
Author(s):  
Carole Guillaume ◽  
Pierre Delobel ◽  
Jean-Marie Sablayrolles ◽  
Bruno Blondin

ABSTRACT Fructose utilization by wine yeasts is critically important for the maintenance of a high fermentation rate at the end of alcoholic fermentation. A Saccharomyces cerevisiae wine yeast able to ferment grape must sugars to dryness was found to have a high fructose utilization capacity. We investigated the molecular basis of this enhanced fructose utilization capacity by studying the properties of several hexose transporter (HXT) genes. We found that this wine yeast harbored a mutated HXT3 allele. A functional analysis of this mutated allele was performed by examining expression in an hxt1-7Δ strain. Expression of the mutated allele alone was found to be sufficient for producing an increase in fructose utilization during fermentation similar to that observed in the commercial wine yeast. This work provides the first demonstration that the pattern of fructose utilization during wine fermentation can be altered by expression of a mutated hexose transporter in a wine yeast. We also found that the glycolytic flux could be increased by overexpression of the mutant transporter gene, with no effect on fructose utilization. Our data demonstrate that the Hxt3 hexose transporter plays a key role in determining the glucose/fructose utilization ratio during fermentation.


Author(s):  
A. Shitova ◽  
I. Anisimova

The activity of wine yeast Saccharomyces cerevisiae used for black currant, cherry and cranberry fermentation was studied using cell area dynamics calculated by computer cytomorphometry method.


2020 ◽  
Vol 85 (2) ◽  
pp. 306-315
Author(s):  
Rui Wang ◽  
Jingcan Sun ◽  
Benjamin Lassabliere ◽  
Bin Yu ◽  
Shao Quan Liu

1990 ◽  
Vol 268 (2) ◽  
pp. 309-315 ◽  
Author(s):  
S M Black ◽  
J D Beggs ◽  
J D Hayes ◽  
A Bartoszek ◽  
M Muramatsu ◽  
...  

Adaptation and resistance to chemicals in the environment is a critical part of the evolutionary process. As a result, a wide variety of defence systems that protect cells against chemical insult have evolved. Such chemical resistance mechanisms appear to play a central role in determining the sensitivity of human tumours to treatment with chemotherapeutic drugs. The glutathione S-transferases (GST) are important detoxification enzymes whose over-expression has been associated with drug-resistance. In order to evaluate this possibility we have expressed the human Alpha-class and Pi-class GST cDNAs that encode GST B1B1 and GST pi in the yeast Saccharomyces cerevisiae. The expression of GST B1B1 or GST pi resulted in a marked reduction in the cytotoxic effects of chlorambucil, a bifunctional alkylating agent, and an anthracycline, adriamycin. These data provide direct evidence that the over-expression of GST in cells can confer resistance to anticancer drugs.


2008 ◽  
Vol 47 (2) ◽  
pp. 139-147 ◽  
Author(s):  
E. Burattini ◽  
M. Cavagna ◽  
R. Dell’Anna ◽  
F. Malvezzi Campeggi ◽  
F. Monti ◽  
...  

2009 ◽  
Vol 5 (3) ◽  
Author(s):  
Yong D Hang ◽  
Edward E Woodams

An improved process with commercial wine yeast Saccharomyces cerevisiae Montrachet was developed for co-production of betacyanine (a natural red beet pigment) and red beet eau-de-vie from the juice of red beet roots (Beta vulgaris). Red beet wines contained more than 55 g/L ethanol and approximately 0.95 g/L betacyanine. The samples of red beet eau-de-vie prepared by distillation of red beet wines had 180 g/L ethanol and the stillages contained nearly 2.5 g/L betacyanine.


Sign in / Sign up

Export Citation Format

Share Document