scholarly journals Expression of human glutathione S-transferases in Saccharomyces cerevisiae confers resistance to the anticancer drugs adriamycin and chlorambucil

1990 ◽  
Vol 268 (2) ◽  
pp. 309-315 ◽  
Author(s):  
S M Black ◽  
J D Beggs ◽  
J D Hayes ◽  
A Bartoszek ◽  
M Muramatsu ◽  
...  

Adaptation and resistance to chemicals in the environment is a critical part of the evolutionary process. As a result, a wide variety of defence systems that protect cells against chemical insult have evolved. Such chemical resistance mechanisms appear to play a central role in determining the sensitivity of human tumours to treatment with chemotherapeutic drugs. The glutathione S-transferases (GST) are important detoxification enzymes whose over-expression has been associated with drug-resistance. In order to evaluate this possibility we have expressed the human Alpha-class and Pi-class GST cDNAs that encode GST B1B1 and GST pi in the yeast Saccharomyces cerevisiae. The expression of GST B1B1 or GST pi resulted in a marked reduction in the cytotoxic effects of chlorambucil, a bifunctional alkylating agent, and an anthracycline, adriamycin. These data provide direct evidence that the over-expression of GST in cells can confer resistance to anticancer drugs.

Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 57
Author(s):  
Giacomo Zara ◽  
Tiziana Nardi

Sulfite is widely used as a preservative in foods and beverages for its antimicrobial and antioxidant activities, particularly in winemaking where SO2 is frequently added. Thus, sulfite resistance mechanisms have been extensively studied in the fermenting yeast Saccharomyces cerevisiae. Nevertheless, in recent years, a negative perception has developed towards sulfites in wine, because of human health and environmental concerns. Increasing consumer demand for wines with low SO2 content is pushing the winemaking sector to develop new practices in order to reduce sulfite content in wine, including the use of physical and chemical alternatives to SO2, and the exploitation of microbial resources to the same purpose. For this reason, the formation of sulfur-containing compounds by wine yeast has become a crucial point of research during the last decades. In this context, the aim of this review is to examine the main mechanisms weaponized by Saccharomyces cerevisiae for coping with sulfite, with a particular emphasis on the production of sulfite and glutathione, sulfite detoxification through membrane efflux (together with the genetic determinants thereof), and production of SO2-binding compounds.


2019 ◽  
Vol 19 (3) ◽  
Author(s):  
Ana Paula de Araújo ◽  
Marcelo Henrique Santos Paiva ◽  
Amanda Maria Cabral ◽  
Antônio Emanuel Holanda Dias Cavalcanti ◽  
Luiz Fernando Freitas Pessoa ◽  
...  

Abstract Resistance to chemical insecticides detected in Aedes aegypti (L.) mosquitoes has been a problem for the National Dengue Control Program (PNCD) over the last years. In order to provide deeper knowledge of resistance to xenobiotics, our study evaluated the susceptibility profile of temephos, diflubenzuron, and cypermethrin insecticides in natural mosquito populations from the Pernambuco State, associating these results with the local historical use of such compounds. Furthermore, mechanisms that may be associated with this particular type of resistance were characterized. Bioassays with multiple temephos and diflubenzuron concentrations were performed to detect and quantify resistance. For cypermethrin, diagnostic dose assays were performed. Biochemical tests were carried out to quantify the activity of detoxification enzymes. In addition, a screening of mutations present in the voltage-gated sodium channel gene (NaV) was performed in samples previously submitted to bioassays with cypermethrin. The populations under study were resistant to temephos and showed a positive correlation between insecticide consumption and the resistance ratio (RR) to the compound. For diflubenzuron, the biological activity ratio (BAR) ranged from 1.3 to 4.7 times, when compared to the susceptible strain. All populations showed resistance to cypermethrin. Altered enzymatic profiles of alpha, p-nitrophenyl acetate (PNPA) esterases and glutathione-S-transferases were recorded in most of these samples. Molecular analysis demonstrated that Arcoverde was the only population that presented the mutated form 1016Ile/Ile. These findings show that the situation is critical vis-à-vis the effectiveness of mosquito control using chemical insecticides, since resistance to temephos and cypermethrin is widespread in Ae. aegypti from Pernambuco.


2021 ◽  
Author(s):  
Jonathan V. Dietz ◽  
Mathilda M. Willoughby ◽  
Robert B. Piel ◽  
Teresa A. Ross ◽  
Iryna Bohovych ◽  
...  

Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied, and all the biosynthetic enzymes have been structurally characterized to varying extents. Nevertheless, our understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Herein we investigate the molecular organization as well as the catalytic and structural features of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and genetic analyses reveal dynamic association of Hem15 with Mic60, a core component of the mitochondrial contact site and cristae organizing system (MICOS). Loss of MICOS negatively impacts Hem15 activity and results in accumulation of highly reactive and potentially toxic tetrapyrrole precursors that may result in oxidative damage. Restoring intermembrane connectivity in MICOS-deficient cells mitigates these cytotoxic effects. Our data provide new insights into how heme biosynthetic machinery is organized and regulated, linking mitochondrial architecture-organizing factors to heme homeostasis.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 544
Author(s):  
Frédérique Hilliou ◽  
Thomas Chertemps ◽  
Martine Maïbèche ◽  
Gaëlle Le Goff

The genus Spodoptera (Lepidoptera: Noctuidae) includes species that are among the most important crop pests in the world. These polyphagous species are able to feed on many plants, including corn, rice and cotton. In addition to their ability to adapt to toxic compounds produced by plants, they have developed resistance to the chemical insecticides used for their control. One of the main mechanisms developed by insects to become resistant involves detoxification enzymes. In this review, we illustrate some examples of the role of major families of detoxification enzymes such as cytochromes P450, carboxyl/cholinesterases, glutathione S-transferases (GST) and transporters such as ATP-binding cassette (ABC) transporters in insecticide resistance. We compare available data for four species, Spodoptera exigua, S. frugiperda, S. littoralis and S. litura. Molecular mechanisms underlying the involvement of these genes in resistance will be described, including the duplication of the CYP9A cluster, over-expression of GST epsilon or point mutations in acetylcholinesterase and ABCC2. This review is not intended to be exhaustive but to highlight the key roles of certain genes.


Author(s):  
Jaquelin M Garcia ◽  
Michael J Schwabe ◽  
Dennis R Voelker ◽  
Wayne R Riekhof

Abstract The alkylphosphocholine (APC) class of antineoplastic and antiprotozoal drugs, such as edelfosine and miltefosine, are structural mimics of lyso-phosphatidylcholine (lyso-PC), and are inhibitory to the yeast Saccharomyces cerevisiae at low micromolar concentrations. Cytotoxic effects related to inhibition of phospholipid synthesis, induction of an unfolded protein response, inhibition of oxidative phosphorylation, and disruption of lipid rafts have been attributed to members of this drug class, however the molecular mechanisms of action of these drugs remain incompletely understood. Cytostatic and cytotoxic effects of the alkylphosphocholines exhibit variability with regard to chemical structure, leading to differences in effectiveness against different organisms or cell types. We now report the comprehensive identification of Saccharomyces cerevisiae titratable-essential gene and haploid non-essential gene deletion mutants that are resistant to the APC drug miltefosine (hexadecyl-O-phosphocholine). 58 strains out of ∼5600 tested displayed robust and reproducible resistance to miltefosine. This gene set was heavily enriched in functions associated with vesicular transport steps, especially those involving endocytosis and retrograde transport of endosome derived vesicles to the Golgi or vacuole, suggesting a role for these trafficking pathways in transport of miltefosine to potential sites of action in the endoplasmic reticulum (ER) and mitochondrion. In addition, we identified mutants with defects in phosphatidylinositol-4-phosphate synthesis (TetO::STT4) and hydrolysis (sac1Δ), an oxysterol binding protein homolog (osh2Δ), a number of ER resident proteins, and multiple components of the eisosome. These findings suggest that ER-plasma membrane contact sites and retrograde vesicle transport are involved in the interorganelle transport of lyso-PtdCho and related lyso-phospholipid-like analogs to their intracellular sites of cytotoxic activity.


1989 ◽  
Vol 67 (7) ◽  
pp. 352-357 ◽  
Author(s):  
Dawn A. H. Rittberg ◽  
Jim A. Wright

Ribonucleotide reductase is responsible for providing the deoxyribonucleotide precursors for DNA synthesis. In most species the enzyme consists of a large and a small subunit, both of which are required for activity. In mammalian cells, the small subunit is the site of action of several antitumor agents, including hydroxyurea and 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (MAIQ). The mRNA levels for the small subunit of ribonucleotide reductase (RNR2) and sensitivity to hydroxyurea and MAIQ were determined in four strains of the yeast, Saccharomyces cerevisiae. Two strains exhibited significantly different sensitivities to both hydroxyurea and MAIQ, which closely correlated with differences in the levels of RNR2 mRNA. These results are consistent with recent observations with mammalian cells in culture, and indicate that a common mechanism of resistance to hydroxyurea and related drugs occurs through the elevation in ribonucleotide reductase message levels. A transplason mutagenized strain with marked structural modifications in RNR2 DNA and mRNA showed an extreme hypersensitivity to hydroxyurea but not to MAIQ, providing evidence that the two drugs do not inhibit the RNR2 subunit by the same mechanism. In addition, a yeast strain isolated for low but reproducible resistance to MAIQ exhibited a sensitivity to hydroxyurea similar to the parental wild-type strain, supporting the idea that the two drugs inhibit the activity of RNR2 by unique mechanisms. These yeast strains provide a useful approach for further studies into the regulation of eucaryotic ribonucleotide reduction and drug resistance mechanisms involving a key rate-limiting step in DNA synthesis.Key words: Saccharomyces cerevisiae, reductase, messenger RNA, hydroxyurea, thiosemicarbazone.


2002 ◽  
Vol 368 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Silvia MARÍN ◽  
Sylvia MANSILLA ◽  
Natàlia GARCÍA-REYERO ◽  
Marta ROJAS ◽  
José PORTUGAL ◽  
...  

Several anti-tumour drugs exert some of their cytotoxic effects by direct binding to DNA, thus inhibiting the transcription of certain genes. We analysed the influence of the anti-tumour antibiotic daunorubicin on the transcription of different genes in vivo using the budding yeast Saccharomyces cerevisiae. Daunorubicin only affected wild-type yeast strains at very high concentrations; however, erg6 mutant strains (but not pdr1, pdr3 or pdr5 strains) were sensitive to daunorubicin at low micromolar concentrations. In Δerg6 strains, daunorubicin inhibited the galactose-induced transcription by Gal4p in a specific manner, since the transcription of identical reporters driven by other activators (either constitutive or inducible) was not inhibited. The drug concentrations at which Gal4p function was inhibited did not affect cell growth or viability. Furthermore, daunorubicin inhibited the growth in galactose and the transcriptional induction of resident Gal4p-driven genes upon galactose addition, two processes absolutely dependent on Gal4p function. We propose that daunorubicin and some transcription factors compete for DNA sequences encompassing CpG steps, and that this is the main determinant of the effects of the drug on transcription in vivo. Our approach may foster the development of anti-tumour drugs with more specific mechanisms of action.


2016 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
Titin Yulinery ◽  
Ratih M.Dewi

Tes kemampuan adalah salah satu kegiatan penting dalam pengendalian mutu dan jaminan kualitas mikrobiologi laboratorium untuk mengukur kompetensi analis dan analisis uji profisiensi membutuhkan persiapan Model mikroorganisme adalah kualitas standar dan validitas. Mikrobiologi uji kualitas produk kedelai utama diarahkan pada kehadiran Saccharomyces cerevisiae ragi (S. cerevisiae), S. Bailli, S. rouxii dankontaminan bakteri seperti Bacillus dan Deinococcus. Jenis ragi dan bakteri yang terlibat dalam proses dan dapat menjadi salah satu parameter kualitas penting dalam persiapan yang dihasilkan. Jumlah dan viabilitas bakteri dan ragi menjadi parameter utama dalam proses persiapan bahan uji. Jumlah tersebut adalah jumlah minimum yang berlaku dapat dianalisis. Jumlah ini harus dibawah 10 CFU diperlukan untuk menunjukkan tingkat hygienitas proses dan tingkat minimal kontaminasi. Viabilitas bakteri dan bahan tes ragi persiapan untuk tes kemahiran kecap yang diawetkan dengan L-pengeringan adalah teknik Deinococcus radiodurans (D. radiodurans) 16 tahun, 58 tahun S. cerevisiae, dan S. roxii 13 tahun. kata kunci: Viabilitas, Deinococcus, khamir, L-pengeringan, Proficiency AbstractProficiency test is one of the important activities in quality control and quality assurance microbiology laboratory for measuring the competence of analysts and analysis Proficiency test requires a model microorganism preparations are standardized quality and validity. Microbiological test of the quality of the main soy products aimed at thepresence of yeast Saccharomyces cerevisiae (S. cerevisiae), S. bailli, S. rouxii and bacterial contaminants such as Bacillus and Deinococcus. Types of yeasts and bacteria involved in the process and can be one of the important quality parameters in the preparation produced. The number and viability of bacteria and yeasts become themain parameters in the process of test preparation materials. The amount in question is the minimum number that is valid can be analyzed. This amount must be below 10 CFU required to indicate the level of hygienitas process and the minimum level of contamination. Viability of bacteria and yeast test preparation materials for proficiencytest of soy sauce that preserved by L-drying technique is Deinococcus radiodurans ( D. radiodurans ) 16 years, 58 years S. cerevisiae, and S. roxii 13 years. key words : Viability, Deinococcus, Khamir, L-drying, Proficiency


Sign in / Sign up

Export Citation Format

Share Document