scholarly journals A Multi-Model Approach for User Portrait

2021 ◽  
Vol 13 (6) ◽  
pp. 147
Author(s):  
Yanbo Chen ◽  
Jingsha He ◽  
Wei Wei ◽  
Nafei Zhu ◽  
Cong Yu

Age, gender, educational background, and so on are the most basic attributes for identifying and portraying users. It is also possible to conduct in-depth mining analysis and high-level predictions based on such attributes to learn users’ preferences and personalities so as to enhance users’ online experience and to realize personalized services in real applications. In this paper, we propose using classification algorithms in machine learning to predict users’ demographic attributes, such as gender, age, and educational background, based on one month of data collected with the Sogou search engine with the goal of making user portraits. A multi-model approach using the fusion algorithms is adopted and hereby described in the paper. The proposed model is a two-stage structure using one month of data with demographic labels as the training data. The first stage of the structure is based on traditional machine learning models and neural network models, whereas the second one is a combination of the models from the first stage. Experimental results show that our proposed multi-model method can achieve more accurate results than the single-model methods in predicting user attributes. The proposed approach also has stronger generalization ability in predicting users’ demographic attributes, making it more adequate to profile users.

Author(s):  
Hyun-il Lim

The neural network is an approach of machine learning by training the connected nodes of a model to predict the results of specific problems. The prediction model is trained by using previously collected training data. In training neural network models, overfitting problems can occur from the excessively dependent training of data and the structural problems of the models. In this paper, we analyze the effect of DropConnect for controlling overfitting in neural networks. It is analyzed according to the DropConnect rates and the number of nodes in designing neural networks. The analysis results of this study help to understand the effect of DropConnect in neural networks. To design an effective neural network model, the DropConnect can be applied with appropriate parameters from the understanding of the effect of the DropConnect in neural network models.


2020 ◽  
Author(s):  
James P. Bohnslav ◽  
Nivanthika K. Wimalasena ◽  
Kelsey J. Clausing ◽  
David Yarmolinksy ◽  
Tomás Cruz ◽  
...  

AbstractResearchers commonly acquire videos of animal behavior and quantify the prevalence of behaviors of interest to study nervous system function, the effects of gene mutations, and the efficacy of pharmacological therapies. This analysis is typically performed manually and is therefore immensely time consuming, often limited to a small number of behaviors, and variable across researchers. Here, we created DeepEthogram: software that takes raw pixel values of videos as input and uses machine learning to output an ethogram, the set of user-defined behaviors of interest present in each frame of a video. We used convolutional neural network models that compute motion in a video, extract features from motion and single frames, and classify these features into behaviors. These models classified behaviors with greater than 90% accuracy on single frames in videos of flies and mice, matching expert-level human performance. The models accurately predicted even extremely rare behaviors, required little training data, and generalized to new videos and subjects. DeepEthogram runs rapidly on common scientific computer hardware and has a graphical user interface that does not require programming by the end-user. We anticipate DeepEthogram will enable the rapid, automated, and reproducible assignment of behavior labels to every frame of a video, thus accelerating all those studies that quantify behaviors of interest.Code is available at: https://github.com/jbohnslav/deepethogram


2021 ◽  
Vol 11 (15) ◽  
pp. 6918
Author(s):  
Chidubem Iddianozie ◽  
Gavin McArdle

The effectiveness of a machine learning model is impacted by the data representation used. Consequently, it is crucial to investigate robust representations for efficient machine learning methods. In this paper, we explore the link between data representations and model performance for inference tasks on spatial networks. We argue that representations which explicitly encode the relations between spatial entities would improve model performance. Specifically, we consider homogeneous and heterogeneous representations of spatial networks. We recognise that the expressive nature of the heterogeneous representation may benefit spatial networks and could improve model performance on certain tasks. Thus, we carry out an empirical study using Graph Neural Network models for two inference tasks on spatial networks. Our results demonstrate that heterogeneous representations improves model performance for down-stream inference tasks on spatial networks.


2020 ◽  
Author(s):  
Paul Francoeur ◽  
Tomohide Masuda ◽  
David R. Koes

One of the main challenges in drug discovery is predicting protein-ligand binding affinity. Recently, machine learning approaches have made substantial progress on this task. However, current methods of model evaluation are overly optimistic in measuring generalization to new targets, and there does not exist a standard dataset of sufficient size to compare performance between models. We present a new dataset for structure-based machine learning, the CrossDocked2020 set, with 22.5 million poses of ligands docked into multiple similar binding pockets across the Protein Data Bank and perform a comprehensive evaluation of grid-based convolutional neural network models on this dataset. We also demonstrate how the partitioning of the training data and test data can impact the results of models trained with the PDBbind dataset, how performance improves by adding more, lower-quality training data, and how training with docked poses imparts pose sensitivity to the predicted affinity of a complex. Our best performing model, an ensemble of 5 densely connected convolutional newtworks, achieves a root mean squared error of 1.42 and Pearson R of 0.612 on the affinity prediction task, an AUC of 0.956 at binding pose classification, and a 68.4% accuracy at pose selection on the CrossDocked2020 set. By providing data splits for clustered cross-validation and the raw data for the CrossDocked2020 set, we establish the first standardized dataset for training machine learning models to recognize ligands in non-cognate target structures while also greatly expanding the number of poses available for training. In order to facilitate community adoption of this dataset for benchmarking protein-ligand binding affinity prediction, we provide our models, weights, and the CrossDocked2020 set at https://github.com/gnina/models.


2022 ◽  
Author(s):  
Leon Faure ◽  
Bastien Mollet ◽  
Wolfram Liebermeister ◽  
Jean-Loup Faulon

Metabolic networks have largely been exploited as mechanistic tools to predict the behavior of microorganisms with a defined genotype in different environments. However, flux predictions by constraint-based modeling approaches are limited in quality unless labor-intensive experiments including the measurement of media intake fluxes, are performed. Using machine learning instead of an optimization of biomass flux - on which most existing constraint-based methods are based - provides ways to improve flux and growth rate predictions. In this paper, we show how Recurrent Neural Networks can surrogate constraint-based modeling and make metabolic networks suitable for backpropagation and consequently be used as an architecture for machine learning. We refer to our hybrid - mechanistic and neural network - models as Artificial Metabolic Networks (AMN). We showcase AMN and illustrate its performance with an experimental dataset of Escherichia coli growth rates in 73 different media compositions. We reach a regression coefficient of R2=0.78 on cross-validation sets. We expect AMNs to provide easier discovery of metabolic insights and prompt new biotechnological applications.


2000 ◽  
Author(s):  
Arturo Pacheco-Vega ◽  
Mihir Sen ◽  
Rodney L. McClain

Abstract In the current study we consider the problem of accuracy in heat rate estimations from artificial neural network models of heat exchangers used for refrigeration applications. The network configuration is of the feedforward type with a sigmoid activation function and a backpropagation algorithm. Limited experimental measurements from a manufacturer are used to show the capability of the neural network technique in modeling the heat transfer in these systems. Results from this exercise show that a well-trained network correlates the data with errors of the same order as the uncertainty of the measurements. It is also shown that the number and distribution of the training data are linked to the performance of the network when estimating the heat rates under different operating conditions, and that networks trained from few tests may give large errors. A methodology based on the cross-validation technique is presented to find regions where not enough data are available to construct a reliable neural network. The results from three tests show that the proposed methodology gives an upper bound of the estimated error in the heat rates.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 689 ◽  
Author(s):  
Tyler McCandless ◽  
Susan Dettling ◽  
Sue Ellen Haupt

This work compares the solar power forecasting performance of tree-based methods that include implicit regime-based models to explicit regime separation methods that utilize both unsupervised and supervised machine learning techniques. Previous studies have shown an improvement utilizing a regime-based machine learning approach in a climate with diverse cloud conditions. This study compares the machine learning approaches for solar power prediction at the Shagaya Renewable Energy Park in Kuwait, which is in an arid desert climate characterized by abundant sunshine. The regime-dependent artificial neural network models undergo a comprehensive parameter and hyperparameter tuning analysis to minimize the prediction errors on a test dataset. The final results that compare the different methods are computed on an independent validation dataset. The results show that the tree-based methods, the regression model tree approach, performs better than the explicit regime-dependent approach. These results appear to be a function of the predominantly sunny conditions that limit the ability of an unsupervised technique to separate regimes for which the relationship between the predictors and the predictand would differ for the supervised learning technique.


2019 ◽  
Vol 9 (13) ◽  
pp. 2683 ◽  
Author(s):  
Sang-Ki Ko ◽  
Chang Jo Kim ◽  
Hyedong Jung ◽  
Choongsang Cho

We propose a sign language translation system based on human keypoint estimation. It is well-known that many problems in the field of computer vision require a massive dataset to train deep neural network models. The situation is even worse when it comes to the sign language translation problem as it is far more difficult to collect high-quality training data. In this paper, we introduce the KETI (Korea Electronics Technology Institute) sign language dataset, which consists of 14,672 videos of high resolution and quality. Considering the fact that each country has a different and unique sign language, the KETI sign language dataset can be the starting point for further research on the Korean sign language translation. Using the KETI sign language dataset, we develop a neural network model for translating sign videos into natural language sentences by utilizing the human keypoints extracted from the face, hands, and body parts. The obtained human keypoint vector is normalized by the mean and standard deviation of the keypoints and used as input to our translation model based on the sequence-to-sequence architecture. As a result, we show that our approach is robust even when the size of the training data is not sufficient. Our translation model achieved 93.28% (55.28%, respectively) translation accuracy on the validation set (test set, respectively) for 105 sentences that can be used in emergency situations. We compared several types of our neural sign translation models based on different attention mechanisms in terms of classical metrics for measuring the translation performance.


2019 ◽  
Vol 207 ◽  
pp. 05004 ◽  
Author(s):  
Chiara De Sio

The KM3NeT Collaboration is building a network of underwater Cherenkov telescopes at two sites in the Mediterranean Sea, with the main goals of investigating astrophysical sources of high-energy neutrinos (ARCA) and of determining the neutrino mass hierarchy (ORCA). Various Machine Learning techniques, such as Random Forests, BDTs, Shallow and Deep Networks are being used for diverse tasks, such as event-type and particle identification, energy/direction estimation, source identification, signal/background discrimination and data analysis, with sound results as well as promising research paths. The main focus of this work is the application of Convolutional Neural Network models to the tasks of neutrino interaction classification, as well as the estimation of energy and direction of the propagating particles. The performances are also compared to those of the standard reconstruction algorithms used in the Collaboration.


Sign in / Sign up

Export Citation Format

Share Document