scholarly journals Prescribed Burning Reduces Large, High-Intensity Wildfires and Emissions in the Brazilian Savanna

Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 56
Author(s):  
Filippe L.M. Santos ◽  
Joana Nogueira ◽  
Rodrigo A. F. de Souza ◽  
Rodrigo M. Falleiro ◽  
Isabel B. Schmidt ◽  
...  

Brazil has recently (2014) changed from a zero-fire policy to an Integrated Fire Management (IFM) program with the active use of prescribed burning (PB) in federal Protected Areas (PA) and Indigenous Territories (IT) of the Brazilian savanna (Cerrado). PB is commonly applied in the management of fire-prone ecosystems to mitigate large, high-intensity wildfires, the associated emissions, and high fire suppression costs. However, the effectiveness of such fire management in reducing large wildfires and emissions over Brazil remains mostly unevaluated. Here, we aim to fill the gap in the scientific evidence of the PB benefits by relying on the most up-to-date, satellite-derived fire datasets of burned area (BA), fire size, duration, emissions, and intensity from 2003 to 2018. We focused on two Cerrado ITs with different sizes and hydrological regimes, Xerente and Araguaia, where IFM has been in place since 2015. To understand fire regime dynamics, we divided the study period into three phases according to the prevalent fire policy and the individual fire scars into four size classes. We considered two fire seasons: management fire season (MFS, which goes from rainy to mid-dry season, when PBs are undertaken) and wildfires season (WFS, when PBs are not performed and fires tend to grow out of control). Our results show that the implementation of the IFM program was responsible for a decrease of the areas affected by high fire recurrence in Xerente and Araguaia, when compared with the Zero Fire Phase (2008–2013). In both regions, PB effectively reduced the large wildfires occurrence, the number of medium and large scars, fire intensity, and emissions, changing the prevalent fire season from the WFS to the MFS. Such reductions are significant since WFS causes higher negative impacts on biodiversity conservation and higher greenhouse gas emissions. We conclude that the effect on wildfires can still be reduced if effective fire management policies, including PB, continue to be implemented during the coming decades.

Koedoe ◽  
2013 ◽  
Vol 55 (1) ◽  
Author(s):  
Tineke Kraaij ◽  
Richard M. Cowling ◽  
Brian W. Van Wilgen

Until recently, fire ecology was poorly understood in the eastern coastal region of the Cape Floral Kingdom (CFK), South Africa. Rainfall in the area is aseasonal and temperatures are milder than in the winter-rainfall and drier inland parts of the CFK, with implications for the management of fire regimes. We synthesised the findings of a research programme focused on informing ecologically sound management of fire in eastern coastal fynbos shrublands and explored potential east–west trends at the scales of study area and CFK in terms of fire return interval (FRI) and fire season. FRIs (8–26 years; 1980–2010) were comparable to those elsewhere in the CFK and appeared to be shorter in the eastern Tsitsikamma than in the western Outeniqua halves of the study area. Proteaceae juvenile periods (4–9 years) and post-fire recruitment success suggested that for biodiversity conservation purposes, FRIs should be ≥ 9 years in eastern coastal fynbos. Collectively, findings on the seasonality of actual fires and the seasonality of fire danger weather, lightning and post-fire proteoid recruitment suggested that fires in eastern coastal fynbos are not limited to any particular season. We articulated these findings into ecological thresholds pertaining to the different elements of the fire regime in eastern coastal fynbos, to guide adaptive management of fire in the Garden Route National Park and elsewhere in the region.Conservation implications: Wildfires are likely to remain dominant in eastern coastal fynbos, whilst large-scale implementation of prescribed burning is unattainable. Fires occurring in any season are not a reason for concern, although other constraints remain: the need for sufficient fire intensity, safety requirements, and integration of fire and invasive alien plant management.


2012 ◽  
Vol 21 (4) ◽  
pp. 328 ◽  
Author(s):  
Steen Magnussen ◽  
Stephen W. Taylor

Year-to-year variation in fire activity in Canada constitutes a key challenge for fire management agencies. Interagency sharing of fire management resources has been ongoing on regional, national and international scales in Canada for several decades to better cope with peaks in resource demand. Inherent stressors on these schemes determined by the fire regimes in constituent jurisdictions are not well known, nor described by averages. We developed a statistical framework to examine the likelihood of regional synchrony of peaks in fire activity at a timescale of 1 week. Year-to-year variations in important fire regime variables and 48 regions in Canada are quantified by a joint distribution and profiled at the Provincial or Territorial level. The fire regime variables capture the timing of the fire season, the average number of fires, area burned, and the timing and extent of annual maxima. The onset of the fire season was strongly correlated with latitude and longitude. Regional synchrony in the timing of the maximum burned area within fire seasons delineates opportunities for and limitations to sharing of fire suppression resources during periods of stress that were quantified in Monte Carlo simulations from the joint distribution.


Fire ◽  
2018 ◽  
Vol 1 (3) ◽  
pp. 49 ◽  
Author(s):  
Alessandra Fidelis ◽  
Swanni Alvarado ◽  
Ana Barradas ◽  
Vânia Pivello

The year 2017 was a megafire year, when huge areas burned on different continents. In Brazil, a great extension of the Cerrado burned, raising once more the discussion about the “zero-fire” policy. Indeed, most protected areas of the Cerrado adopted a policy of fire exclusion and prevention, leading to periodic megafire events. Last year, 78% of the Chapada dos Veadeiros National Park burned at the end of the dry season, attracting media attention. Furthermore, 85% of the Reserva Natural Serra do Tombador burned as a result of a large accumulation of fuel caused by the zero-fire policy. In 2014, some protected areas started to implement the Integrate Fire Management (IFM) strategy. During 2017, in contrast to other protected areas, the Estação Ecológica Serra Geral do Tocantins experienced no megafire events, suggesting that a few years of IFM implementation led to changes in its fire regime. Therefore, we intended here to compare the total burned area and number of fire scars between the protected areas where IFM was implemented and those where fire exclusion is the adopted policy. The use of fire as a management tool aimed at wildfire prevention and biodiversity preservation should be reconsidered by local managers and environmental authorities for most Cerrado protected areas, especially those where open savanna physiognomies prevail. Changing the paradigm is a hard task, but last year’s events showed the zero-fire policy would bring more damage than benefits to Cerrado protected areas.


2001 ◽  
Vol 10 (2) ◽  
pp. 169 ◽  
Author(s):  
B.H. Brockett ◽  
H.C. Biggs ◽  
B.W. van Wilgen

Fire-prone savanna ecosystems in southern African conservation areas are managed by prescribed burning in order to conserve biodiversity. A prescribed burning system designed to maximise the benefits of a diverse fire regime in savanna conservation areas is described. The area burnt per year is a function of the grass fuel load, and the number of fires per year is a function of the percentage area burnt. Fires are point-ignited, under a range of fuel and weather conditions, and allowed to burn out by themselves. The seasonal distribution of planned fires over a year is dependent on the number of fires. Early dry season fires (May–June) tend to be small because fuels have not yet fully cured, while late season fires (August–November) are larger. More fires are ignited in the early dry season, with fewer in the late dry season. The seasonality, area burnt, and fire intensity are spatially and temporally varied across a landscape. This should result in the creation of mosaics, which should vary in extent and existence in time. Envelopes for the accumulated percentage to be burnt per month, over the specified fire season, together with upper and lower buffers to the target area are proposed. The system was formalised after 8 years of development and testing in Pilanesberg National Park, South Africa. The spatial heterogeneity of fire patterns increased over the latter years of implementation. This fire management system is recommended for savanna conservation areas of >20 000 ha in size.


2020 ◽  
Author(s):  
Patrícia S. Silva ◽  
Julia A. Rodrigues ◽  
Filippe L. M. Santos ◽  
Joana Nogueira ◽  
Allan A. Pereira ◽  
...  

<p>Fire is a natural disturbance in the Brazilian savannas, Cerrado, with substantial ecological and economic impacts. Most studies have characterized the fire regime in this biome using climate drivers but neglected the geographical variation of anthropogenic activities. These factors can trigger inappropriate fire-fighting decisions and biodiversity conservation policies. This takes special relevance in fire-prone biomes with recent fire management policies as Cerrado, which have been highly modified over the last decades due to changes in land use and climate. </p><p>Here, we aim to identify how variations in climate and anthropogenic drivers influence burned area (BA) trends at the regional level (microregions) in Cerrado. We evaluated satellite-derived BA (MCD64, collection 6) for 172 microregions from 2001 to 2018 across the entire biome. The Canadian Forest Fire Weather Index (FWI) was used as a proxy of climate using meteorological variables from ECMWF’s ERA5 reanalysis product. The human leverage, considered here as population density (PD) and land use (LU), were derived, respectively, from the annual census of the Brazillian Institute of Geography and Statistics (IBGE) and from a Brazilian platform of annual land use/cover mapping (MapBiomas). Recent BA trends considering the drivers FWI, LU and PD, were estimated using the non-parametric Theil-Sen regression and the modified Mann-Kendall test. </p><p>Results showed BA trends over the last 18 years were significant and spatially contrasted along Cerrado: positive trends were found in the north-eastern region (in particular, the most recent agricultural frontier in Brazil: MATOPIBA) whereas the south-western region showed negative trends. PD showed positive trends in all microregions and, similarly, LU obtained positive trends over most of Cerrado. Positive FWI trends were also found over the central and north-eastern regions and FWI was the driver that explained most of BA variance in Cerrado. LU and PD were found to have much more complex relations with BA. Moreover, regarding the seasonal variability of microregions with positive and negative trends, the former were found to begin earlier in June and last longer, indicating that the overall fire season in Cerrado may be extending. </p><p>The approach presented here allows the exploration of recent trends affecting fires, crucial to inform and support better allocation of resources in fire management under current and future conditions.</p><p>The study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPQ) through grants 305159/2018-6 and 441971/2018-0. P. Silva is funded by Fundação para a Ciência e a Tecnologia (FCT), grant number SFRH/BD/146646/2019.</p>


Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Valerie S. Densmore ◽  
Emma S. Clingan

Abstract Background Prescribed burning is used to reduce fire hazard in highly flammable vegetation types, including Banksia L.f. woodland that occurs on the Swan Coastal Plain (SCP), Western Australia, Australia. The 2016 census recorded well over 1.9 million people living on the SCP, which also encompasses Perth, the fourth largest city in Australia. Banksia woodland is prone to frequent ignitions that can cause extensive bushfires that consume canopy-stored banksia seeds, a critical food resource for an endangered bird, the Carnaby’s cockatoo (Calyptorynchus latirostris, Carnaby 1948). The time needed for banksias to reach maturity and maximum seed production is several years longer than the typical interval between prescribed burns. We compared prescribed burns to bushfires and unburned sites at three locations in banksia woodland to determine whether low-intensity prescribed burns affect the number of adult banksias and their seed production. Study sites were matched to the same vegetation complex, fire regime, and time-since-fire to isolate fire intensity as a variable. Results Headfire rates of spread and differenced normalized burn ratios indicated that prescribed burning was generally of a much lower intensity than bushfire. The percentage survival of adult banksias and their production of cones and follicles (seeds) did not decrease during the first three years following a prescribed burn. However, survival and seed production were significantly diminished followed high-intensity bushfire. Thus, carrying capacity for Carnaby’s cockatoo was unchanged by prescribed burning but decreased markedly following bushfire in banksia woodland. Conclusions These results suggest that prescribed burning is markedly different from bushfire when considering appropriate fire intervals to conserve canopy habitats in fire-resilient vegetation communities. Therefore, low-intensity prescribed burning represents a viable management tool to reduce the frequency and extent of bushfire impacts on banksia woodland and Carnaby’s cockatoo.


2020 ◽  
Author(s):  
Orsolya Valkó

<p>Fire is a globally relevant natural or anthropogenic phenomenon with a rapidly increasing importance in the era of the climate change. In each year, approximately 4% of the global land surface burns. For effective ecosystem conservation, we need to understand fire regimes, identify potential threats, and also the possibilities in the application of prescribed burning for maintaining ecosystems.</p><p>Here I provide an overview on the contradictory role of fire in nature conservation from two continents with contrasting fire histories, focusing on European and North-American grasslands. I show that the ecological effects of fire depend on the fire regime, fire history, ecosystem properties and the socio-economic environment. Catastrophic wildfires, arson, too frequent or improperly planned human-induced fire often lead to the degradation of the ecosystems, the disappearance of rare plant and animal species, and to the encroachment of weed and invasive species. I illustrate with examples that these negative fire effects act synergistically with the human-induced changes in land use systems.</p><p>I also underline with case studies that in both regions, properly designed and controlled prescribed burning regimes can aid the understanding and managing disturbance-dependent ecosystems. Conservation in these dynamic and complex ecosystems is far more than fencing and hoping to exclude disturbance; but the contrary: disturbance is needed for ecosystem functioning. Therefore, the conservation of dynamic, diverse and functioning ecosystems often require drastic interventions and an unconventional conservation attitude. However, the expanding urban-wildlife interface makes the application of prescribed burning challenging worldwide. A major message for the future is about fire policy: it is crucial to moderate the negative effects of fire, however, properly designed prescribed burning should be used as a tool for managing and conserving disturbance-dependent ecosystems.</p>


2000 ◽  
Vol 48 (1) ◽  
pp. 71 ◽  
Author(s):  
David A. Morrison ◽  
John A. Renwick

Fire is a common source of change for the plant species of Mediterranean-type ecosystems, but little is known about the comparative effects of different fire intensities. Accordingly, nine species of small tree (Acacia binervia, Acacia implexa, Acacia parramattensis, Casuarina littoralis, Casuarina torulosa, Hakea sericea, Jacksonia scoparia, Leptospermum trinervium, Persoonia linearis) were studied 1 year after each of two low-intensity prescribed fires and a high-intensity wildfire at a site in the outer western region of the Sydney metropolitan area, south-eastern Australia. All of the species except H. sericea proved to be at least partly tolerant of the low-intensity fires (40–80% of their stems surviving the fires), but only C. torulosa, L. trinervium and P. linearis were tolerant of the high-intensity fire (20–30% stem survival). All of the fire-tolerant species had more of their smaller stems killed by the fires, and the high-intensity fire killed larger stems than did the low-intensity-fires. The size of surviving stems was related to the fire-tolerance characteristics for these species, specifically the presence or absence of insulating bark and epicormic or lignotuberous buds, as well as stem height (preventing 100% leaf-scorch). Those species with post-fire shoots at the stem base produced them when the upper part of the stem had been killed, with variable response to the fire intensities in the number of shoots produced. Those species with post-fire epicormic shoots produced them if the stem was alive post-fire, usually with fewer shoots produced after the high-intensity than the low-intensity fire. The number of shoots produced was positively related to the size of the stem for both fire intensities. These different sets of responses to the fire intensities have important implications for the ability to predict community responses to fire based on the study of only a few species, as well for the long-term effects of prescribing a particular fire regime.


Koedoe ◽  
2008 ◽  
Vol 50 (1) ◽  
Author(s):  
Brian W. Van Wilgen ◽  
Navashni Govender ◽  
Sandra MacFadyen

This paper reviews recent changes in fire management in the Kruger National Park, and assesses the resulting fire patterns against thresholds of potential concern. In 2002, a lightning-driven approach was replaced by an approach that combined point ignitions with unplanned and lightning fires. The approach aimed to burn an annual target area, determined by rainfall and fuel conditions, in point-ignition fires of different sizes. Most of the original fire-related thresholds of potential concern (TPCs) were incorporated into the new approach. The annual target area to be burnt ranged from 12 to 24% of the park between 2002 and 2006. The total area burnt generally exceeded the targets each year, and management fires accounted for less than half of the total area burnt. The fire regime was dominated by very large fires (> 5 000 ha) which accounted for 77% of the total area burnt. New TPCs were developed to assess whether the fire regime encompassed a sufficient degree of variability, in terms of fire intensity and the spatial distribution of burnt areas. After assessment and adjustment, it appears that these TPCs have not yet been exceeded. The point-ignition approach, and its evaluation in terms of variability and heterogeneity, is based on the untested assumption that a diverse fire regime will promote biodiversity. This assumption needs to be critically assessed. We recommend that the practice of point ignitions be continued, but that greater efforts be made to burn larger areas earlier in the season to reduce large and intense dry-season fires.


2015 ◽  
Vol 24 (6) ◽  
pp. 857 ◽  
Author(s):  
Andrew Edwards ◽  
Jeremy Russell-Smith ◽  
Mick Meyer

Despite the intact appearance of relatively unmodified north Australian savannas, mounting evidence indicates that contemporary fire regimes characterised by frequent, extensive and severe late dry season wildfires are having deleterious effects on a range of regional water, soil erosion, biodiversity conservation and greenhouse gas (GHG) emissions values. For the high rainfall (>1000 mm year–1) savannas (426 000 km2), we assessed the spatial effects of contemporary fire regimes within the context of ecosystem response models and three plausible alternative fire management scenarios on ecosystem attributes. Over the 2008–12 assessment period, mean annual fire frequency (0.53) comprised mostly late dry season fires. Although spatially variable, contemporary fire regimes resulted in substantial GHG emissions, hill slope erosion and suspended sediment transport, a slight decline in carbon biomass and slight positive effects on fire-vulnerable vegetation. Based on available climate change models and strategic fire management practice, we show that, relative to business-as-usual, improved fire management involving strategic prescribed burning results in substantial benefits to most ecosystem attributes, including under enhanced climate change conditions, whereas in the absence of improved fire management, climate change results in substantially worse outcomes.


Sign in / Sign up

Export Citation Format

Share Document