scholarly journals Fire regimes in eastern coastal fynbos: Imperatives and thresholds in managing for diversity

Koedoe ◽  
2013 ◽  
Vol 55 (1) ◽  
Author(s):  
Tineke Kraaij ◽  
Richard M. Cowling ◽  
Brian W. Van Wilgen

Until recently, fire ecology was poorly understood in the eastern coastal region of the Cape Floral Kingdom (CFK), South Africa. Rainfall in the area is aseasonal and temperatures are milder than in the winter-rainfall and drier inland parts of the CFK, with implications for the management of fire regimes. We synthesised the findings of a research programme focused on informing ecologically sound management of fire in eastern coastal fynbos shrublands and explored potential east–west trends at the scales of study area and CFK in terms of fire return interval (FRI) and fire season. FRIs (8–26 years; 1980–2010) were comparable to those elsewhere in the CFK and appeared to be shorter in the eastern Tsitsikamma than in the western Outeniqua halves of the study area. Proteaceae juvenile periods (4–9 years) and post-fire recruitment success suggested that for biodiversity conservation purposes, FRIs should be ≥ 9 years in eastern coastal fynbos. Collectively, findings on the seasonality of actual fires and the seasonality of fire danger weather, lightning and post-fire proteoid recruitment suggested that fires in eastern coastal fynbos are not limited to any particular season. We articulated these findings into ecological thresholds pertaining to the different elements of the fire regime in eastern coastal fynbos, to guide adaptive management of fire in the Garden Route National Park and elsewhere in the region.Conservation implications: Wildfires are likely to remain dominant in eastern coastal fynbos, whilst large-scale implementation of prescribed burning is unattainable. Fires occurring in any season are not a reason for concern, although other constraints remain: the need for sufficient fire intensity, safety requirements, and integration of fire and invasive alien plant management.

1985 ◽  
Vol 12 (2) ◽  
pp. 141-146 ◽  
Author(s):  
George P. Malanson

Wildland fire management directly affects the forces of natural selection to which plant taxa become adapted. Changes in a fire regime will often result in changes in the relative abundance of particular species, and may cause the extinction of some of them. Life-history characteristics are important indicators of adaptation to recurrent disturbance, such as may be produced by fire. The incorporation of these characteristics in a computer simulation allows of the projection of species abundance under different fire regimes.Through prescribed burning and fire suppression, fire interval and fire intensity can be controlled to some extent. The fire intensity for given sets of fuel, site, and meteoro-logical conditions, representing given fire-intervals, is calculated with the use of a fire behaviour computer simulation. These results are incorporated in computer simulation of the demographic competition of the five dominant shrub species of coastal sage-scrub in the Santa Monica Mountains of southern California: Artemisia californica, Encelia californica, Eriogonum cinereum, Salvia leucophylla, and S. mellifera. The model incorporates resprouting proportions, seedling establishment, and growth, and assumes survivorship rates in simulating scramble competition for space. Foliar cover-values of the five species are projected for nine different fire regimes. Short fire-intervals of the order of 10–20 years, such as might occur under a regime of prescribed burning, may eliminate or greatly reduce some species, whereas longer intervals allow the maintenance of a more diverse community especially of shrubs. Fixed and variable interval-lengths do not produce appreciably different results.This study suggests that prescribed burning at 10–20 years' intervals should not be used indiscriminately to reduce wildland fire hazard in southern California. The fire intervals that will reduce the hazard, may eliminate some dominant native shrub species. A ‘natural’ fire regime which would maintain the natural vegetation while constituting only a minimum hazard to homesites may, unfortunately, be mutually exclusive goals in the coastal sage-scrub of southern California.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 56
Author(s):  
Filippe L.M. Santos ◽  
Joana Nogueira ◽  
Rodrigo A. F. de Souza ◽  
Rodrigo M. Falleiro ◽  
Isabel B. Schmidt ◽  
...  

Brazil has recently (2014) changed from a zero-fire policy to an Integrated Fire Management (IFM) program with the active use of prescribed burning (PB) in federal Protected Areas (PA) and Indigenous Territories (IT) of the Brazilian savanna (Cerrado). PB is commonly applied in the management of fire-prone ecosystems to mitigate large, high-intensity wildfires, the associated emissions, and high fire suppression costs. However, the effectiveness of such fire management in reducing large wildfires and emissions over Brazil remains mostly unevaluated. Here, we aim to fill the gap in the scientific evidence of the PB benefits by relying on the most up-to-date, satellite-derived fire datasets of burned area (BA), fire size, duration, emissions, and intensity from 2003 to 2018. We focused on two Cerrado ITs with different sizes and hydrological regimes, Xerente and Araguaia, where IFM has been in place since 2015. To understand fire regime dynamics, we divided the study period into three phases according to the prevalent fire policy and the individual fire scars into four size classes. We considered two fire seasons: management fire season (MFS, which goes from rainy to mid-dry season, when PBs are undertaken) and wildfires season (WFS, when PBs are not performed and fires tend to grow out of control). Our results show that the implementation of the IFM program was responsible for a decrease of the areas affected by high fire recurrence in Xerente and Araguaia, when compared with the Zero Fire Phase (2008–2013). In both regions, PB effectively reduced the large wildfires occurrence, the number of medium and large scars, fire intensity, and emissions, changing the prevalent fire season from the WFS to the MFS. Such reductions are significant since WFS causes higher negative impacts on biodiversity conservation and higher greenhouse gas emissions. We conclude that the effect on wildfires can still be reduced if effective fire management policies, including PB, continue to be implemented during the coming decades.


2001 ◽  
Vol 10 (2) ◽  
pp. 169 ◽  
Author(s):  
B.H. Brockett ◽  
H.C. Biggs ◽  
B.W. van Wilgen

Fire-prone savanna ecosystems in southern African conservation areas are managed by prescribed burning in order to conserve biodiversity. A prescribed burning system designed to maximise the benefits of a diverse fire regime in savanna conservation areas is described. The area burnt per year is a function of the grass fuel load, and the number of fires per year is a function of the percentage area burnt. Fires are point-ignited, under a range of fuel and weather conditions, and allowed to burn out by themselves. The seasonal distribution of planned fires over a year is dependent on the number of fires. Early dry season fires (May–June) tend to be small because fuels have not yet fully cured, while late season fires (August–November) are larger. More fires are ignited in the early dry season, with fewer in the late dry season. The seasonality, area burnt, and fire intensity are spatially and temporally varied across a landscape. This should result in the creation of mosaics, which should vary in extent and existence in time. Envelopes for the accumulated percentage to be burnt per month, over the specified fire season, together with upper and lower buffers to the target area are proposed. The system was formalised after 8 years of development and testing in Pilanesberg National Park, South Africa. The spatial heterogeneity of fire patterns increased over the latter years of implementation. This fire management system is recommended for savanna conservation areas of >20 000 ha in size.


Fire Ecology ◽  
2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Valerie S. Densmore ◽  
Emma S. Clingan

Abstract Background Prescribed burning is used to reduce fire hazard in highly flammable vegetation types, including Banksia L.f. woodland that occurs on the Swan Coastal Plain (SCP), Western Australia, Australia. The 2016 census recorded well over 1.9 million people living on the SCP, which also encompasses Perth, the fourth largest city in Australia. Banksia woodland is prone to frequent ignitions that can cause extensive bushfires that consume canopy-stored banksia seeds, a critical food resource for an endangered bird, the Carnaby’s cockatoo (Calyptorynchus latirostris, Carnaby 1948). The time needed for banksias to reach maturity and maximum seed production is several years longer than the typical interval between prescribed burns. We compared prescribed burns to bushfires and unburned sites at three locations in banksia woodland to determine whether low-intensity prescribed burns affect the number of adult banksias and their seed production. Study sites were matched to the same vegetation complex, fire regime, and time-since-fire to isolate fire intensity as a variable. Results Headfire rates of spread and differenced normalized burn ratios indicated that prescribed burning was generally of a much lower intensity than bushfire. The percentage survival of adult banksias and their production of cones and follicles (seeds) did not decrease during the first three years following a prescribed burn. However, survival and seed production were significantly diminished followed high-intensity bushfire. Thus, carrying capacity for Carnaby’s cockatoo was unchanged by prescribed burning but decreased markedly following bushfire in banksia woodland. Conclusions These results suggest that prescribed burning is markedly different from bushfire when considering appropriate fire intervals to conserve canopy habitats in fire-resilient vegetation communities. Therefore, low-intensity prescribed burning represents a viable management tool to reduce the frequency and extent of bushfire impacts on banksia woodland and Carnaby’s cockatoo.


2021 ◽  
Author(s):  
Jie Zhao ◽  
Chao Yue ◽  
Philippe Ciais ◽  
Xin Hou ◽  
Qi Tian

<p>Wildfire is the most prevalent natural disturbance in the North American boreal (BNA) forest and can cause post-fire land surface temperature change (ΔLST<sub>fire</sub>) through biophysical processes. Fire regimes, such as fire severity, fire intensity and percentage of burned area (PBA), might affect ΔLST<sub>fire</sub> through their impacts on post-fire vegetation damage. However, the difference of the influence of different fire regimes on the ΔLST<sub>fire</sub> has not been quantified in previous studies, despite ongoing and projected changes in fire regimes in BNA in association with climate change. Here we employed satellite observations and a space-and-time approach to investigate diurnal ΔLST<sub>fire</sub> one year after fire across BNA. We further examined potential impacts of three fire regimes (i.e., fire intensity, fire severity and PBA) and latitude on ΔLST<sub>fire</sub> by simple linear regression analysis and multiple linear regression analysis in a stepwise manner. Our results demonstrated pronounced asymmetry in diurnal ΔLST<sub>fire</sub>, characterized by daytime warming in contrast to nighttime cooling over most BNA. Such diurnal ΔLST<sub>fire</sub> also exhibits a clear latitudinal pattern, with stronger daytime warming and nighttime cooling one year after fire in lower latitudes, whereas in high latitudes fire effects are almost neutral. Among the fire regimes, fire severity accounted for the most (43.65%) of the variation of daytime ΔLST<sub>fire</sub>, followed by PBA (11.6%) and fire intensity (8.5%). The latitude is an important factor affecting the influence of fire regimes on daytime ΔLST<sub>fire</sub>. The sensitivity of fire intensity and PBA impact on daytime ΔLST<sub>fire</sub> decreases with latitude. But only fire severity had a significant effect on nighttime ΔLST<sub>fire</sub> among three fire regimes. Our results highlight important fire regime impacts on daytime ΔLST<sub>fire</sub>, which might play a critical role in catalyzing future boreal climate change through positive feedbacks between fire regime and post-fire surface warming.</p>


2011 ◽  
Vol 59 (1) ◽  
pp. 70 ◽  
Author(s):  
Sapphire J. M. McMullan-Fisher ◽  
Tom W. May ◽  
Richard M. Robinson ◽  
Tina L. Bell ◽  
Teresa Lebel ◽  
...  

Fungi are essential components of all ecosystems in roles including symbiotic partners, decomposers and nutrient cyclers and as a source of food for vertebrates and invertebrates. Fire changes the environment in which fungi live by affecting soil structure, nutrient availability, organic and inorganic substrates and other biotic components with which fungi interact, particularly mycophagous animals. We review the literature on fire and fungi in Australia, collating studies that include sites with different time since fire or different fire regimes. The studies used a variety of methods for survey and identification of fungi and focussed on different groups of fungi, with an emphasis on fruit-bodies of epigeal macrofungi and a lack of studies on microfungi in soil or plant tissues. There was a lack of replication of fire treatment effects in some studies. Nevertheless, most studies reported some consequence of fire on the fungal community. Studies on fire and fungi were concentrated in eucalypt forest in south-west and south-eastern Australia, and were lacking for ecosystems such as grasslands and tropical savannahs. The effects of fire on fungi are highly variable and depend on factors such as soil and vegetation type and variation in fire intensity and history, including the length of time between fires. There is a post-fire flush of fruit-bodies of pyrophilous macrofungi, but there are also fungi that prefer long unburnt vegetation. The few studies that tested the effect of fire regimes in relation to the intervals between burns did not yield consistent results. The functional roles of fungi in ecosystems and the interactions of fire with these functions are explained and discussed. Responses of fungi to fire are reviewed for each fungal trophic group, and also in relation to interactions between fungi and vertebrates and invertebrates. Recommendations are made to include monitoring of fungi in large-scale fire management research programs and to integrate the use of morphological and molecular methods of identification. Preliminary results suggest that fire mosaics promote heterogeneity in the fungal community. Management of substrates could assist in preserving fungal diversity in the absence of specific information on fungi.


2012 ◽  
Vol 124 (1) ◽  
pp. 1 ◽  
Author(s):  
A. Malcolm Gill

In the trend towards the domestication, or taming, of fire regimes in Victoria, Australia, the level of prescribed burning has been stepped up due to a recommendation from the 2009 Victorian Bushfires Royal Commission. While prescribed burning programs may be instituted for a number of reasons, especially the protection of life and property, they have consequences for the conservation of biodiversity. Not all vegetation types can be prescribed burned because the weather does not always allow it to occur under safe working conditions; where prescribed burning programs are carried out, unplanned fires may still occur. Thus, the general issue is the effect on biodiversity of both prescribed and unplanned fires, neither alone. Here, the importance to biodiversity conservation of all the components of the fire regime– interval, season, intensity and type (peat fire or otherwise) – and their domain of variability is emphasized. If conservation of biodiversity is to be guaranteed in a changing fire world, then much more knowledge about the systems being managed, gained in large part through effective monitoring, is needed. Issues such as targets and some assumptions of management are addressed here.


2010 ◽  
Vol 16 (1) ◽  
pp. 46 ◽  
Author(s):  
T. D. Penman ◽  
S. H. Penman

Prescribed burning is applied worldwide as a forest management tool. It is broadly accepted that altered fire regimes can directly impact upon community structure and composition, but little is known about the indirect effects of altered fire regimes on the mechanisms that produce community-level changes such as changes to the reproductive output of individual plants, hence populations. We examined the reproductive output of four species of Proteaceae within a long term study site where disturbance histories for the last twenty years have been accurately recorded on 216 plots. Frequent fire was found to increase woody fruit production in Banksia marginata, but had no apparent effect on B. serrata, Hakea eriantha or H. sericea. Results of this study vary from a similar study which examined the effect of wildfires. The differences observed are likely to reflect the differing impacts of fire intensity on these species. Indirect changes in fruit production may result in changes in reproductive success of species which in turn may affect vegetation community structure and faunal habitat.


2020 ◽  
Vol 23 (3) ◽  
pp. 328-339
Author(s):  
Liliana Neto Duarte ◽  
Carlos Pinto Gomes ◽  
Hélia Marchante ◽  
Elizabete Marchante

2019 ◽  
Vol 139 (3) ◽  
pp. 393-406
Author(s):  
Sarah Cogos ◽  
Samuel Roturier ◽  
Lars Östlund

AbstractIn Sweden, prescribed burning was trialed as early as the 1890s for forest regeneration purposes. However, the origins of prescribed burning in Sweden are commonly attributed to Joel Efraim Wretlind, forest manager in the State Forest district of Malå, Västerbotten County, from 1920 to 1952. To more fully understand the role he played in the development of prescribed burning and the extent of his burning, we examined historical records from the State Forest Company’s archive and Wretlind’s personal archive. The data showed that at least 11,208 ha was burned through prescribed burning between 1921 and 1970, representing 18.7% of the Malå state-owned forest area. Wretlind thus created a new forestry-driven fire regime, reaching, during peak years, extents close to historical fire regimes before the fire suppression era, and much higher than present-day burning. His use of prescribed fire to regenerate forests served as a guide for many other forest managers, spreading to all of northern Sweden during the 1950–1960s. Our analysis of Wretlind’s latest accounts also shows how he stood against the evolutions of modern forestry to defend a forestry system based on the reproduction of natural processes, such as fire.


Sign in / Sign up

Export Citation Format

Share Document