scholarly journals Evaluation of Quality and Storability of “Italia” Table Grapes Kept on the Vine in Comparison to Cold Storage Techniques

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 943
Author(s):  
Francesca Piazzolla ◽  
Maria Luisa Amodio ◽  
Sandra Pati ◽  
Giancarlo Colelli

The aim of the study was to compare the quality of table grapes (cv. Italia) held on the vine compared to grapes stored in cold rooms with or without modified-atmosphere packaging (MAP). The grapes were harvested from 12 plants in 2 vineyards in the same area, differing for the age of the plant. Four- and a fourteen-year-old vines were cultivated with the “Apulia tendone” system. After the first harvest, grapes were divided into small clusters and used for storage treatments in air and in MAP. Samples of 400 g were packaged in polypropylene (PP) trays sealed with a polypropylene/polyamide (PP/PA) film with 20% CO2 in air. MAP and control samples were then stored in the same cold room at 0 °C. Initially and after 8, 21, and 28 days, grapes stored in air and MAP were compared to fresh harvested grapes, stored on the plants. Quality attributes included color, texture, maturity index, phenols, antioxidant activity, sugars, organic acids, sensory parameters, and volatile compounds. The results obtained demonstrated that grapes held on the plant and in MAP showed better quality in terms of appearance scores compared to grapes stored in air. In particular, the application of high CO2 contributed to reduce the deterioration rate of the clusters, minimizing weight loss, and delaying degradation processes, and this particularly for grapes from the 14-year-old vine, where grapes held on the plant degraded faster than grapes in the younger vines. Most volatile compounds did not change their concentration with the storage treatment, except for ethyl acetate and ethanol, which increased in MAP at the end of storage, and to some compound responsible for green odor. In conclusion, keeping the grapes on the plant can be considered a good agronomic practice to preserve the quality, whereas MAP can be applied to better maintain postharvest quality of the product throughout storage and distribution.

2014 ◽  
Vol 32 (5) ◽  
pp. 655-665 ◽  
Author(s):  
Me-Hea Park ◽  
Ji-Weon Choi ◽  
Yong-Bum Kim ◽  
Myeong-Hae Kim ◽  
Hee-Yeon Won ◽  
...  

2020 ◽  
Vol 8 (5) ◽  
pp. 656 ◽  
Author(s):  
Xiang Fang ◽  
Qinchun Duan ◽  
Zhuo Wang ◽  
Fuyun Li ◽  
Jianxiong Du ◽  
...  

‘Red Globe’ table grapes are large, edible, seeded fruit with firm flesh that tastes good, but can have poor postharvest shelf-life. This study was conducted to explore the effects of products of Lactobacillus delbrueckii subsp. bulgaricus strain F17 and Leuconostoc lactis strain H52 on ‘Red Globe’ table grapes for the enhancement of shelf-life and improvement of grape quality characteristics during postharvest storage. Strains F17 and H52 were isolated from traditional fermented yak milk obtained in the Qinghai–Tibetan Plateau. Samples from untreated and treated grapes were analyzed for physicochemical, biochemical, and microbiological properties (weight loss, decay rate, pH, total soluble solids content, titratable acidity, total phenols, sensory evaluation, and microbial growth) for 20 days. The results demonstrated that supernatants from both strains significantly reduced weight loss, decay rate, aerobic mesophilic bacteria, and coliform bacteria counts; delayed maturity and senescence of table grapes; and reduced titratable acidity and total phenols. However, the supernatant of strain F17 was more effective and resulted in better sensory evaluations and had a significant inhibitory effect on yeast and molds by day 5. Meanwhile, the supernatant from strain H52 had a significant inhibitory effect on fungi over the whole storage period. In addition, the results of the Pearson correlation analysis suggested that weight loss, decay rate, total soluble solids content, and microorganisms were highly correlated with the sensory evaluation data and quality of postharvest grapes when treated with the products of strain F17. On the basis of these data and sensory organoleptic qualities, the supernatant containing products from strain F17 had the best potential as a biopreservative to improve the postharvest quality of ‘Red Globe’ table grapes.


2020 ◽  
Vol 10 (4) ◽  
pp. 665-676
Author(s):  
Ya-Dan Sun ◽  
Da-Long Guo ◽  
Sheng-Di Yang ◽  
He-Cheng Zhang ◽  
Lei-Lei Wang ◽  
...  

BACKGROUND: Melatonin (MT) is an endogenous indoleamine that regulates senescence progression and stress response in plants. OBJECTIVE: Here, we investigated the effect of MT on the shelf-life and postharvest quality of table grapes (Vitis labrusca L. cv. ‘Fengzao’). METHODS: After harvesting, ‘Fengzao’ grapes were immersed in MT solution at various concentrations (0 [as control], 0.05, 0.1, 0.5 and 1.0 mM for 2 h and stored at 24±1 for 15 days. Physiological indicators including weight loss rate, firmness, contents of total soluble solids (TSSs), ascorbic acid (AsA), malondialdehyde (MDA), hydrogen peroxide (H2O2), and activities of catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) were investigated. Additionally, the DNA methylation rate of ‘Fengzao’ grapes were measured using the methylation-sensitive amplification polymorphism (MSAP) technique. RESULTS: Application of MT effectively delayed grape senescence in all treatment groups compared with the control, with the longest delay observed in the 0.5 mM treatment. Additionally, the rate of DNA methylation decreased in all the 0.5 mM MT treatment groups, indicating a potential role of MT in demethylation. CONCLUSIONS: Our results suggest that the exogenous application of MT can delay the senescence of grapes during postharvest.


2016 ◽  
Vol 51 (5) ◽  
pp. 1236-1243 ◽  
Author(s):  
Qing Liu ◽  
Zhumei Xi ◽  
Jiangman Gao ◽  
Ying Meng ◽  
Sun Lin ◽  
...  

2002 ◽  
Vol 24 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Chang-Kui Ding ◽  
Kazuo Chachin ◽  
Yoshinori Ueda ◽  
Yoshihiro Imahori ◽  
Chien Y. Wang

Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
David Gimeno ◽  
Jaime Gonzalez-Buesa ◽  
Rosa Oria ◽  
Maria Eugenia Venturini ◽  
Esther Arias

Red raspberries (Rubus idaeus L.) are highly appreciated by consumers. However, their postharvest shelf life scarcely exceeds 5 d under the refrigeration temperatures usually applied during commercialization, due to their high susceptibility to dehydration, softening and rot incidence. Thus, the objective of this study was to investigate the ability of UV-C radiation (UV1: 2 kJ m−2 and UV2: 4 kJ m−2), passive modified atmosphere packaging (MAP) with transmission rates (TR) for O2 and CO2 of 1805 mL d−1 and 1570 mL d−1 (MAP1), and 902 mL d−1 and 785 mL d−1 (MAP2), respectively, and the combination of both technologies to prolong raspberries’ shelf life at 6 °C. Their influence on respiration, physicochemical parameters, and microbiological and nutritional quality was assessed during 12 d of storage. The combination of 4 kJ m−2 UV-C radiation and a packaging film with O2 and CO2 transmission rates of 902 mL d−1 and 785 mL d−1, respectively, produced a synergistic effect against rot development, delaying senescence of the fruit. The UV2MAP2 and MAP2 samples only showed 1.66% rot incidence after 8 d of storage. The UV2MAP2 samples also had higher bioactive content (1.76 g kg−1 of gallic acid equivalents (GAE), 1.08 g kg−1 of catechin equivalents (CE) and 0.32 g kg−1 of cyanidin 3-O-glucoside equivalents (CGE)) than the control samples at the end of their shelf life. Moreover, the mass loss was minimal (0.56%), and fruit color and firmness were maintained during shelf life. However, the rest of the batches were not suitable for commercialization after 4 d due to excessive mold development.


Sign in / Sign up

Export Citation Format

Share Document