scholarly journals Biofilm Formation Reduction by Eugenol and Thymol on Biodegradable Food Packaging Material

Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Pavel Pleva ◽  
Lucie Bartošová ◽  
Daniela Máčalová ◽  
Ludmila Zálešáková ◽  
Jana Sedlaříková ◽  
...  

Biofilm is a structured community of microorganisms adhering to surfaces of various polymeric materials used in food packaging. Microbes in the biofilm may affect food quality. However, the presence of biofilm can ensure biodegradation of discarded packaging. This work aims to evaluate a biofilm formation on the selected biodegradable polymer films: poly (lactic acid) (PLA), poly (butylene adipate-co-terephthalate) (PBAT), and poly (butylene succinate) (PBS) by selected bacterial strains; collection strains of Escherichiacoli, Staphylococcusaureus; and Bacillus pumilus, Bacillussubtilis, Bacillustequilensis, and Stenotrophomonasmaltophilia isolated from dairy products. Three different methods for biofilm evaluation were performed: the Christensen method, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and fluorescence microscopy. High biofilm formation was confirmed on the control PBS film, whereas low biofilm formation ability was observed on the PLA polymer sample. Furthermore, the films with incorporated antimicrobial compounds (thymol or eugenol) were also prepared. Antimicrobial activity and also reduction in biofilm formation on enriched polymer films were determined. Therefore, they were all proved to be antimicrobial and effective in reducing biofilm formation. These films can be used to prepare novel active food packaging for the dairy industry to prevent biofilm formation and enhance food quality and safety in the future.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1263
Author(s):  
Cornelia Vasile ◽  
Mihaela Baican

Food packaging is designed to protect foods, to provide required information about the food, and to make food handling convenient for distribution to consumers. Packaging has a crucial role in the process of food quality, safety, and shelf-life extension. Possible interactions between food and packaging are important in what is concerning food quality and safety. This review tries to offer a picture of the most important types of active packaging emphasizing the controlled/target release antimicrobial and/or antioxidant packaging including system design, different methods of polymer matrix modification, and processing. The testing methods for the appreciation of the performance of active food packaging, as well as mechanisms and kinetics implied in active compounds release, are summarized. During the last years, many fast advancements in packaging technology appeared, including intelligent or smart packaging (IOSP), (i.e., time–temperature indicators (TTIs), gas indicators, radiofrequency identification (RFID), and others). Legislation is also discussed.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2133
Author(s):  
Helena Oliver-Ortega ◽  
Josep Tresserras ◽  
Fernando Julian ◽  
Manel Alcalà ◽  
Alba Bala ◽  
...  

Packaging consumes around 40% of the total plastic production. One of the most important fields with high requirements is food packaging. Food packaging products have been commonly produced with petrol polymers, but due to environmental concerns, the market is being moved to biopolymers. Poly (lactic acid) (PLA) is the most promising biopolymer, as it is bio-based and biodegradable, and it is well established in the market. Nonetheless, its barrier properties need to be enhanced to be competitive with other polymers such as polyethylene terephthalate (PET). Nanoclays improve the barrier properties of polymeric materials if correct dispersion and exfoliation are obtained. Thus, it marks a milestone to obtain an appropriate dispersion. A predispersed methodology is proposed as a compounding process to improve the dispersion of these composites instead of common melt procedures. Afterwards, the effect of the polarity of the matrix was analyzing using polar and surface modified nanoclays with contents ranging from 2 to 8% w/w. The results showed the suitability of the predispersed and concentrated compound, technically named masterbatch, to obtain intercalated structures and the higher dispersion of polar nanoclays. Finally, the mechanical performance and sustainability of the prepared materials were simulated in a food tray, showing the best assessment of these materials and their lower fingerprint.


2019 ◽  
Vol 11 (34) ◽  
pp. 31317-31327 ◽  
Author(s):  
Evie L. Papadopoulou ◽  
Uttam C. Paul ◽  
Thi Nga Tran ◽  
Giulia Suarato ◽  
Luca Ceseracciu ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3491
Author(s):  
Andrea Walzl ◽  
Samir Kopacic ◽  
Wolfgang Bauer ◽  
Erich Leitner

The current demand to cut back on the use of plastic materials has brought a major boost to the search for bio-based alternatives. Not only are plastic bags and primary food packaging under scrutiny here, but also those materials used as functional barriers to reduce, for example, the migration of mineral oil hydrocarbons (MOH) from recycled paper and board packaging. Most of the barriers now in use are synthetic, often have only moderate barrier functionalities and in addition reduce the environmentally-friendly character of cellulose-based materials. Against this background, bio-based polymers have been evaluated in terms of their functional barrier properties. Chitosan was found to be among the best performers in these materials. In this study, the behavior of a lab-made chitosan acetate film was compared with conventionally produced polymer films. The two-sided migration experiment described recently was used to determine the barrier properties of the tested materials. This not only allowed to test the intrinsic migration of the films and the permeation through them, but also to simulate real packaging situations by using a recycled paper as donor for MOH. The migrated fractions were determined using gas-chromatography-based techniques. While the conventionally produced polymer films showed only moderate barrier function, excellent results were seen for the biopolymer. It reduced the migration from the recycled paper to not detectable, singling it out as a good alternative to conventional materials.


2017 ◽  
Vol 47 (4) ◽  
pp. 591-606 ◽  
Author(s):  
Nitin Kumar ◽  
Preetinder Kaur ◽  
Surekha Bhatia

Purpose The purpose of this paper is to acquaint the readers with recent developments in biopolymer-based food packaging materials like natural biopolymers (such as starches and proteins), synthetic biopolymers (such as poly lactic acid), biopolymer blending and nanocomposites grounded on natural and synthetic biopolymers. This paper is an attempt to draw the readers towards the advantages and attributes of new era polymers to diminish the usage of traditional non-biodegradable polymers. Design/methodology/approach Plastic packaging for food and associated applications is non-biodegradable and uses up valuable and treasured non-renewable petroleum products. With the current focus on researching alternatives to petroleum, research is progressively being channelized towards the development of biodegradable food packaging, thereby reducing adverse impact on the environment. Findings Natural biopolymer-based nanocomposite packaging materials seem to have a scintillating future for a broad range of applications in the food industry, including advanced active food packaging with biofunctional attributes. The present review summarizes the scientific information of various packaging materials along with their attributes, applications and the methods for production. Originality/value This is an apropos review as there has been a recent renewed concern in research studies, both in the industry and academe, for development of new generation biopolymer-based food packaging materials, with possible applications in many areas.


2014 ◽  
Vol 62 (41) ◽  
pp. 10170-10180 ◽  
Author(s):  
Marina Patricia Arrieta ◽  
María del Mar Castro-López ◽  
Emilio Rayón ◽  
Luis Fernando Barral-Losada ◽  
José Manuel López-Vilariño ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document