scholarly journals Comparative Assessment of Tubular Ceramic, Spiral Wound, and Hollow Fiber Membrane Microfiltration Module Systems for Milk Protein Fractionation

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 692
Author(s):  
Roland Schopf ◽  
Florian Schmidt ◽  
Johanna Linner ◽  
Ulrich Kulozik

The fractionation efficiency of hollow fiber membranes (HFM) for milk protein fractionation was compared to ceramic tubular membranes (CTM) and spiral wound membranes (SWM). HFM combine the features of high membrane packing density of SWM and the more defined flow conditions and better control of membrane fouling in the open flow channel cross-sections of CTM. The aim was to comparatively analyze the effect of variations in local pressure and flow conditions while using single industrially sized standard modules with similar dimensions and module footprints (module diameter and length). The comparative assessment with varied transmembrane pressure was first applied for a constant feed volume flow rate of 20 m3 h−1 and, secondly, with the same axial pressure drop along the modules of 1.3 bar m−1, similar to commonly applied crossflow velocity and wall shear stress conditions at the industrial level. Flux, transmission factor of proteins (whey proteins and serum caseins), and specific protein mass flow per area membrane and per volume of module installed were determined as the evaluation criteria. The casein-to-whey protein ratios were calculated as a measure for protein fractionation effect. Results obtained show that HFM, which so far are under-represented as standard module types in industrial dairy applications, appear to be a competitive alternative to SWM and CTM for milk protein fractionation.

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Michael Pflaum ◽  
Sophie Jurmann ◽  
Katherina Katsirntaki ◽  
Marisa Mälzer ◽  
Axel Haverich ◽  
...  

To provide an alternative treatment option for patients with end-stage lung disease, we aim for biohybrid lung development (BHL) based on hollow fiber membrane (HFM) technology used in extracorporeal membrane oxygenators. For long-term BHL application, complete hemocompatibility of all blood-contacting surfaces is indispensable and can be achieved by their endothelialization. Indeed, albumin/heparin (AH) coated HFM enables initial endothelialization, but as inexplicable cell loss under flow conditions was seen, we assessed an alternative HFM coating using fibronectin (FN). Therefore, endothelial cell (EC) adherence and viability on both coated HFM were analyzed by fluorescence-based staining. Functional leukocyte and thrombocyte adhesion assays were performed to evaluate hemocompatibility, also in comparison to blood plasma coated HFM as a clinically relevant control. To assess monolayer resistance and EC behavior under clinically relevant flow conditions, a mock circulation setup was established, which also facilitates imitation of lung-disease specific blood gas settings. Besides quantification of flow-associated cell loss, endothelial responses towards external stimuli, like flow exposure or TNFα stimulation, were analyzed by qRT-PCR, focusing on inflammation, thrombus formation and extracellular matrix production. Under static conditions, both coated HFM enabled the generation of a viable, confluent, non-inflammatory and anti-thrombogenic monolayer. However, by means of homogenous FN coating, cell retention and physiologic gene regulation towards an improved hemocompatible-and extracellular matrix producing phenotype, was significantly superior compared to the inhomogeneous AH coating. In summary, our adaptable in-house FN coating secures the endothelial requirements for long-term BHL application and may promote monolayer establishment on all other blood contacting surfaces of the BHL (e.g., cannulae).


2012 ◽  
Vol 518-523 ◽  
pp. 755-759
Author(s):  
Liang Wang ◽  
Bin Zhao ◽  
Shu Ling Ma ◽  
Hong Wei Zhang ◽  
Qin Yang

Polyurethane-polyvinylidene fluoride (PU-PVDF) hollow fiber blend membrane prepared by melting, spinning and drawing processes was used to treat lake water in a submerged coagulation-microfiltration (SCMF) process. This novel membrane is characterized by its elastic pore size increase with the pressure increase; therefore, the backwashing step could effectively remove the depositions stuck in membrane pores. Compared to the system using polyvinylidene fluoride (PVDF) hollow fiber membrane, the membrane anti-fouling ability was stronger in the system using PU-PVDF blend membrane, and the transmembrane pressure increased more slowly at a fixed permeate flux. Organic matters were removed comparably for both membranes during the first 3 h treatment, but those with benzene ring structures were susceptibly restricted by PU-PVDF blend membrane as the filtration went on. The turbidity removal was stable in the PU-PVDF system with an average of 97%, and was slightly higher than that in the PVDF system. The outstanding anti-fouling ability and excellent pollutant removal performance make the PU-PVDF hollow fiber blend membrane a better candidate for the SCMF process.


2013 ◽  
Vol 788 ◽  
pp. 413-417 ◽  
Author(s):  
Zhao Cui ◽  
Jie Wang ◽  
Hui Jia ◽  
Xiao Hong Dai ◽  
Yan Zhang

Based on the characteristics of non-uniform distribution in the fouling of hollow-fiber membrane, the non-uniform distribution of local flux and redistribution with different fiber length (0.6 m、1.2 m、1.6 m) was investigated experimentally. Experiment was conducted under the condition of operating flux 20 L/m2h (20 LMH). The results indicated that the longer fiber length was, the greater difference in local pressure and the more non-uniform the local flux distributed. Under operating mode of critical flux, the flux distribution in the length of 1.6 m membrane fiber is the most non-uniform with the fastest fouling rate. In addition, the distribution of local flux is more uniform for 0.6 m fiber under the operating flux of 16 LMH, which also slow down membrane fouling significantly. Shorter membrane fiber generally exhibited higher uniformity in the local flux distribution and slower development rate of membrane fouling.


2014 ◽  
Vol 70 (12) ◽  
pp. 1998-2003 ◽  
Author(s):  
J. Ho ◽  
S. Smith ◽  
H. K. Roh

A novel membrane bioreactor (MBR) pilot system, using membrane reciprocation instead of air scouring, was operated at constant high flux and daily fluctuating flux to demonstrate its application under peak and diurnal flow conditions. Low and stable transmembrane pressure was achieved at 40 l/m2/h (LMH) by use of repetitive membrane reciprocation. The results reveal that the inertial forces acting on the membrane fibers effectively propel foulants from the membrane surface. Reciprocation of the hollow fiber membrane is beneficial for the constant removal of solids that may build up on the membrane surface and inside the membrane bundle. The membrane reciprocation in the reciprocating MBR pilot consumed less energy than coarse air scouring used in conventional MBR systems. Specific energy consumption for the membrane reciprocation was 0.072 kWh/m3 permeate produced at 40 LMH flux, which is 75% less than for a conventional air scouring system as reported in literature without consideration of energy consumption for biological aeration (0.29 kWh/m3). The daily fluctuating flux test confirmed that the membrane reciprocation is effective to handle fluctuating flux up to 50 LMH. The pilot-scale reciprocating MBR system successfully demonstrated that fouling can be controlled via 0.43 Hz membrane reciprocation with 44 mm or higher amplitude.


2020 ◽  
Vol 605 ◽  
pp. 118110
Author(s):  
Martin Hartinger ◽  
Simon Schiffer ◽  
Hans-Jürgen Heidebrecht ◽  
Joseph Dumpler ◽  
Ulrich Kulozik

Sign in / Sign up

Export Citation Format

Share Document