scholarly journals Gluten-Free Bread with Cricket Powder—Mechanical Properties and Molecular Water Dynamics in Dough and Ready Product

Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 240 ◽  
Author(s):  
Przemysław Kowalczewski ◽  
Katarzyna Walkowiak ◽  
Łukasz Masewicz ◽  
Olga Bartczak ◽  
Jacek Lewandowicz ◽  
...  

Published data indicate that cricket powder (CP) is a good source of not only protein, fat and fiber, but also minerals. Due to the fact that this product naturally does not contain gluten, it is an interesting addition to the enrichment of gluten-free foods. This paper is a report on the results of starch substitution with CP (at 2%, 6% and 10%) on the properties of dough and bread. The rheology of dough and the texture of the final product were studied. While the changes caused in the dough by the introduction of CP were not pronounced, the bread obtained from it was characterized by significantly increased hardness and improved consistency. Analyses of water behavior at the molecular level with the use of 1H Nuclear Magnetic Resonance (NMR) indicated that CP altered both the bound and bulk water fractions. Moreover, examination of water activity revealed a decreased rate of water transport in samples of bread that contained CP. These results indicate improved availability of water to the biopolymers of bread, which likely plays a role in shaping the textural properties of the product.

2021 ◽  
pp. 108201322098791 ◽  
Author(s):  
Przemysław Łukasz Kowalczewski ◽  
Katarzyna Walkowiak ◽  
Łukasz Masewicz ◽  
Krzysztof Smarzyński ◽  
Joanna Le Thanh-Blicharz ◽  
...  

The paper presents the effect of replacing starch (at 2%, 6% and 10%) with cricket powder (CP) on the water behavior studied by the 1H NMR method, as well as the texture of gluten-free bread during 6-day storage. It was noticed that the bread crumb containing CP has lower water transport rate than the control bread crumb, while concluding that 2% CP stabilizes water transport throughout the entire staling time range. The NMR analyzes showed that the initial T21 values are the higher, the more starch has been replaced with the CP, however, after 6 days of storage, all tested samples are characterized by similar values of the T21 parameter. A decrease in long component of spin-spin relaxation time T22 during storage was also observed. It has been noted that the replacement of starch to 2% and 6% CP causes an increase in the molecular dynamics of water. The less starch present, the greater the potential for bulk molecules to move. The observed changes at the molecular level resulted in macroscopic changes in the texture of the bread. After analyzing the hardness parameter of the tested breads, it was found that on the day of baking, bread without the addition of CP had significantly higher values of this parameter than breads with CP. For the sample without CP, the highest increase in total hardness change (123.93%) was noted during storage, which indicates the fastest texture change process. Based on the results obtained, it can be concluded that the use of cricket powder to enrich gluten-free bread can not only improve the nutritional value, but also effectively delay the process of bread staling.


2021 ◽  
Vol 247 (3) ◽  
pp. 707-718
Author(s):  
Maria Di Cairano ◽  
Marisa Carmela Caruso ◽  
Fernanda Galgano ◽  
Fabio Favati ◽  
Ndy Ekere ◽  
...  

AbstractThere is a need to develop low-sugar healthy products. The aim of this research was to evaluate the effect of maltitol and inulin as sucrose replacement alongside resistant starch (RS) and green banana flour (GBF) on the texture and physical properties of gluten-free doughs and biscuits formulated with buckwheat, sorghum and lentil flours. These properties are important to predict the dough workability, how easy the biscuits could be mass-produced and determine consumers’ acceptability. Results showed that partial and complete substitution of sucrose could be achieved and appropriate concentration of resistant starch or green banana flour contributed to better dough and biscuit texture. RS content showed the biggest influence on dough stickiness and biscuit hardness and could be used to correct the negative effect of sucrose replacement and to maximise both the dough processability and biscuit acceptability.


Author(s):  
Shun Yu ◽  
Valentina Guccini ◽  
Franz Demmel ◽  
Germán Salazar-Alvarez

Cellulose nanofibrils (CNF) are a class of materials with good mechanical properties, surface functionality and bio-/environmental friendliness. They have been used in many applications as loading material or function materials, where water-cellulose interaction determines the materials performance. Especially, CNF with carboxylated groups can be used as the separation membrane in polymer electrolyte membrane fuel cell. The water dynamics is closely related to the proton conductivity. The Non-destructive quasi-elastic neutron scattering (QENS) is used to characterized water movement in hydrated membrane made of CNF prepared by TEMPO-oxidation with different surface charges. However, neither surface charge nor the nanoconfinement due to membrane swelling has large impact on water dynamics mechanism. A slow diffusive motion is found with the diffusion coefficient close to bulk water and that in hydrated Nafion membrane regardless the surface charge, while a fast motion is rather localized with a correlation time increasing as temperature increase, which might related to the hydrogen bond network formation between water and CNF.


Foods ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 156 ◽  
Author(s):  
Christian R. Encina-Zelada ◽  
Vasco Cadavez ◽  
José A. Teixeira ◽  
Ursula Gonzales-Barron

The objective of this study was to investigate, by means of a D-optimal mixture design, the combined effects of hydroxypropyl methyl cellulose (HPMC), xanthan (XG), and guar (GG) gums on physicochemical, rheological, and textural properties of gluten-free batter and bread. For each of the quality properties measured, a two-factor interaction model was fitted, and the significance of its terms was assessed by analysis of variance. Sticky batters were produced with a combination of high dose of GG (0.60%), high-intermediate dose of HPMC (3.36%), and low dose of XG (0.04%). Combinations of high XG dose (0.60%) and intermediate doses of HPMC (3.08%) and GG (0.32%) rendered GF breads of greater specific volume, while lower bread crust luminosity was obtained with combinations of high GG dose (0.60%), low XG dose (0.04%), and high-intermediate HPMC dose (3.36%). Combinations of high-intermediate HPMC dose (3.36%), high GG dose (0.60%), and low XG dose (0.04%) produced both softer crumbs and bread slices of more open visual texture. By using a desirability function that maximized specific volume while minimizing crust luminosity, crumb hardness, and mean cell density, the optimization of hydrocolloids mixture rendered a value of 0.54, for a combination of 0.24% XG, 0.60% GG, and 3.16% HPMC.


Sign in / Sign up

Export Citation Format

Share Document