scholarly journals Novel Thermosensitive-co-Zwitterionic Sulfobetaine Gels for Metal Ion Removal: Synthesis and Characterization

Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 273
Author(s):  
Eva Oktavia Ningrum ◽  
Takehiko Gotoh ◽  
Wirawan Ciptonugroho ◽  
Achmad Dwitama Karisma ◽  
Elly Agustiani ◽  
...  

Zwitterionic betaine polymers are promising adsorbents for the removal of heavy metal ions from industrial effluents. Although the presence of both negative and positively charged groups imparts them the ability to simultaneously remove cations and anions, intra- and/or inter-chain interactions can significantly reduce their adsorption efficiencies. Therefore, in this study, novel gels based on crosslinked co-polymers of thermosensitive N-isopropylacrylamide (NIPAAM) and zwitterionic sulfobetaine N,N-dimethylacrylamido propyl ammonium propane sulfonate (DMAAPS) were synthesized, characterized, and evaluated for ion removal. Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) analyses confirmed the success of the co-polymerization of NIPAAM and DMAAPS to form poly(NIPAAM-co-DMAAPS). The phase transition temperature of the co-polymer increased with increasing DMAAPS content in the co-polymer, indicating temperature-dependent amphiphilic behavior, as evidenced by contact angle measurements. The ion adsorption analyses of the poly(NIPAAM-co-DMAAPS) gels indicated that co-polymerization increased the molecular distance and weakened the interaction between the DMAAPS-charged groups (SO3− and N+), thereby increasing the ion adsorption. The results confirmed that, with a low concentration of DMAAPS in the co-polymer gels (~10%), the maximum amount of Cr3+ ions adsorbed onto the gel was ~58.49% of the sulfonate content in the gel.

Author(s):  
A. Saravanan ◽  
Uvaraja Uvaraja ◽  
Nishanth Nishanth ◽  
Soundarajan Krishnan

Heavy metals are ubiquitous environmental contaminants in industrialized societies. The presence of heavy metals in the environment is of major concern because of their toxicity, bio-accumulating tendency, threat to human life and the environment. Traditional methods have been used to remove heavy metals from effluent include chemical precipitation, chemical oxidation/reduction, ion exchange, electrochemical treatment, evaporation and filtration. Many of these methods are ineffective; resulting in low levels of metal ion removal and can also be economically inefficient. Biomass of brown marine macro algae is a renewable biological resource, which is available in large quantities and can form a good base for the development of biosorbent material. The work considered the parameters of the effluents and the experimental column model for the metal adsorption. Among the experimental model Thomas model fitted the column biosorption data well.


2020 ◽  
Author(s):  
Antonius Agus Bambang Haryanto ◽  
Ari Handono Ramelan ◽  
MTh Sri Budiastuti ◽  
Pranoto

2014 ◽  
Vol 90 (12) ◽  
pp. 2170-2179 ◽  
Author(s):  
Raja S. Azarudeen ◽  
Mohamed A. Riswan Ahamed ◽  
R. Subha ◽  
Abdul R. Burkanudeen

2021 ◽  
Vol 167 ◽  
pp. 113510
Author(s):  
Paola Santander ◽  
Bryan Butter ◽  
Estefanía Oyarce ◽  
Mauricio Yáñez ◽  
Ling-Ping Xiao ◽  
...  

2017 ◽  
Vol 53 ◽  
pp. 132-140 ◽  
Author(s):  
Fang Xu ◽  
Ting-Ting Zhu ◽  
Qing-Quan Rao ◽  
Sheng-Wen Shui ◽  
Wen-Wei Li ◽  
...  

2012 ◽  
Vol 69 (8) ◽  
pp. 881-898 ◽  
Author(s):  
Bernabé L. Rivas ◽  
Sara Hube ◽  
Julio Sánchez ◽  
Eduardo Pereira

Author(s):  
Andre Baldermann ◽  
Andrea Cäcilia Grießbacher ◽  
Claudia Baldermann ◽  
Bettina Purgstaller ◽  
Ilse Letofsky-Papst ◽  
...  

The capacity and the mechanism of the adsorption of aqueous barium (Ba), cobalt (Co), strontium (Sr) and zinc (Zn) by Ecuadorian (NatAllo) and synthetic (SynAllo-1 and SynAllo-2) allophanes were studied as a function of contact time, pH and metal ion concentration using kinetic and equilibrium experiments. The mineralogy, nano-structure and chemical composition of the allophanes were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and specific surface area analyses. The evolution of adsorption fitted to a pseudo-first-order reaction kinetics, where equilibrium between aqueous metal ions and allophane was reached within < 10 min. The metal ion removal efficiencies varied from 0.7 to 99.7 % at pH 4.0 to 8.5. At equilibrium, the adsorption behavior is better described by the Langmuir model than by the Dubinin-Radushkevich model, yielding sorption capacities of 10.6, 17.2 and 38.6 mg/g for Ba^(2+), 12.4, 19.3 and 29.0 mg/g for HCoO_2^-, 7.2, 15.9 and 34.4 mg/g for Sr^(2+) and 20.9, 26.9 and 36.9 mg/g for Zn^(2+), respectively, by NatAllo, SynAllo-2 and SynAllo-1. The uptake mechanism is based on a physical adsorption process. Allophane holds great potential to remove aqueous metal ions and could be used instead of zeolites, montmorillonite, carbonates and phosphates for wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document