scholarly journals Application of Hybrid Electrically Conductive Hydrogels Promotes Peripheral Nerve Regeneration

Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 41
Author(s):  
Fengshi Zhang ◽  
Meng Zhang ◽  
Songyang Liu ◽  
Ci Li ◽  
Zhentao Ding ◽  
...  

Peripheral nerve injury (PNI) occurs frequently, and the prognosis is unsatisfactory. As the gold standard of treatment, autologous nerve grafting has several disadvantages, such as lack of donors and complications. The use of functional biomaterials to simulate the natural microenvironment of the nervous system and the combination of different biomaterials are considered to be encouraging alternative methods for effective tissue regeneration and functional restoration of injured nerves. Considering the inherent presence of an electric field in the nervous system, electrically conductive biomaterials have been used to promote nerve regeneration. Due to their singular physical properties, hydrogels can provide a three-dimensional hydrated network that can be integrated into diverse sizes and shapes and stimulate the natural functions of nerve tissue. Therefore, conductive hydrogels have become the most effective biological material to simulate human nervous tissue’s biological and electrical characteristics. The principal merits of conductive hydrogels include their physical properties and their electrical peculiarities sufficient to effectively transmit electrical signals to cells. This review summarizes the recent applications of conductive hydrogels to enhance peripheral nerve regeneration.

2015 ◽  
Vol 15 (6) ◽  
pp. 612-621 ◽  
Author(s):  
Lorena R. Lizarraga-Valderrama ◽  
Rinat Nigmatullin ◽  
Caroline Taylor ◽  
John W. Haycock ◽  
Frederik Claeyssens ◽  
...  

2020 ◽  
Vol 6 (50) ◽  
pp. eabc6686
Author(s):  
Liu Wang ◽  
Changfeng Lu ◽  
Shuhui Yang ◽  
Pengcheng Sun ◽  
Yu Wang ◽  
...  

Peripheral nerve regeneration remains one of the greatest challenges in regenerative medicine. Deprivation of sensory and/or motor functions often occurs with severe injuries even treated by the most advanced microsurgical intervention. Although electrical stimulation represents an essential nonpharmacological therapy that proved to be beneficial for nerve regeneration, the postoperative delivery at surgical sites remains daunting. Here, a fully biodegradable, self-electrified, and miniaturized device composed of dissolvable galvanic cells on a biodegradable scaffold is achieved, which can offer both structural guidance and electrical cues for peripheral nerve regeneration. The electroactive device can provide sustained electrical stimuli beyond intraoperative window, which can promote calcium activity, repopulation of Schwann cells, and neurotrophic factors. Successful motor functional recovery is accomplished with the electroactive device in behaving rodent models. The presented materials options and device schemes provide important insights into self-powered electronic medicine that can be critical for various types of tissue regeneration and functional restoration.


Author(s):  
Hongyu Liu ◽  
Yanan Zhao ◽  
Jun Tong ◽  
Xiaowen Shi ◽  
Yun Chen ◽  
...  

The development of peripheral nerve tissue engineering requires safe and reliable methodology to construct biodegradable conduits. Herein, a new type of chitosan-based nerve-guide hydrogel conduit (CNHC) with enhanced mechanical flexibility...


Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Guicai Li ◽  
Qi Han ◽  
Panjian Lu ◽  
Liling Zhang ◽  
Yuezhou Zhang ◽  
...  

Biofunctionalization of artificial nerve implants by incorporation of specific bioactive factors has greatly enhanced the success of grafting procedures for peripheral nerve regeneration. However, most studies on novel biofunctionalized implants have emphasized the promotion of neuronal and axonal repair over vascularization, a process critical for long-term functional restoration. We constructed a dual-biofunctionalized chitosan/collagen composite scaffold with Ile-Lys-Val-Ala-Val (IKVAV) and vascular endothelial growth factor (VEGF) by combining solution blending, in situ lyophilization, and surface biomodification. Immobilization of VEGF and IKVAV on the scaffolds was confirmed both qualitatively by staining and quantitatively by ELISA. Various single- and dual-biofunctionalized scaffolds were compared for the promotion of endothelial cell (EC) and Schwann cell (SC) proliferation as well as the induction of angiogenic and neuroregeneration-associated genes by these cells in culture. The efficacy of these scaffolds for vascularization was evaluated by implantation in chicken embryos, while functional repair capacity in vivo was assessed in rats subjected to a 10 mm sciatic nerve injury. Dual-biofunctionalized scaffolds supported robust EC and SC proliferation and upregulated the expression levels of multiple genes and proteins related to neuroregeneration and vascularization. Dual-biofunctionalized scaffolds demonstrated superior vascularization induction in embryos and greater promotion of vascularization, myelination, and functional recovery in rats. These findings support the clinical potential of VEGF/IKVAV dual-biofunctionalized chitosan/collagen composite scaffolds for facilitating peripheral nerve regeneration, making it an attractive candidate for repairing critical nerve defect. The study may provide a critical experimental and theoretical basis for the development and design of new artificial nerve implants with excellent biological performance.


RSC Advances ◽  
2018 ◽  
Vol 8 (20) ◽  
pp. 10806-10817 ◽  
Author(s):  
Ying Bu ◽  
Hai-Xing Xu ◽  
Xin Li ◽  
Wen-Jin Xu ◽  
Yi-xia Yin ◽  
...  

Polymer materials with electrically conductive properties have good applications in their respective fields because of their special properties.


2018 ◽  
Vol 34 (2) ◽  
pp. 190-208 ◽  
Author(s):  
Xing-Lei Guo ◽  
Hai-Xing Xu ◽  
Qun-Di He ◽  
Yun-Xuan Yu ◽  
Xiao-Fei Ming ◽  
...  

Defected peripheral nerve regeneration is still a challenge in clinical treatment. Conductive polymers show great potential in nerve tissue engineering because of their electrical property based on bioelectricity in vivo. In this study, conductive composite nerve conduit was synthesized with tetra-aniline and poly-dl-lactic acid. Their properties and the differentiation of rat pheochromocytoma 12 (PC12) cells in vitro stimulated with 200 mV for 1 h were investigated. Different amounts of tetra-aniline (0%, 5%, 10%, and 15%) were used to synthesize the conduits with different conductivities (0, 0.00625, 0.01, and 0.025 s/m, respectively), tensile strengths (2.45, 3.40, 4.45, and 5.50 MPa, respectively), and contact angles (80°, 78.5°, 62.5°, and 61.5°, respectively). The percentage of neurite-bearing cells and the median neurite length increased with an obvious raise of the content of tetra-aniline. In addition, the conduit with subcutaneous implantable experiments in vivo showed less inflammatory response. These promising results illustrated that this poly-dl-lactic acid/tetra-aniline conductive composite conduit had potential for nerve tissue engineering.


2020 ◽  
Vol 10 (10) ◽  
pp. 3421 ◽  
Author(s):  
Saeid Kargozar ◽  
Masoud Mozafari ◽  
Maryam Ghenaatgar-Kasbi ◽  
Francesco Baino

Bioactive glasses (BGs) have been identified as highly versatile materials in tissue engineering applications; apart from being used for bone repair for many years, they have recently shown promise for the regeneration of peripheral nerves as well. They can be formulated in different shapes and forms (micro-/nanoparticles, micro-/nanofibers, and tubes), thus potentially meeting the diverse requirements for neuroregeneration. Mechanical and biological improvements in three-dimensional (3D) polymeric scaffolds could be easily provided by adding BGs to their composition. Various types of silicate, borate, and phosphate BGs have been examined for use in neuroregeneration. In general, BGs show good compatibility with the nervous system compartments both in vitro and in vivo. Functionalization and surface modification plus doping with therapeutic ions make BGs even more effective in peripheral nerve regeneration. Moreover, the combination of BGs with conductive polymers is suggested to improve neural cell functions at injured sites. Taking advantage of BGs combined with novel technologies in tissue engineering, like 3D printing, can open new horizons in reconstructive approaches for the nervous system. Although there are great potential opportunities in BG-based therapies for peripheral nerve regeneration, more research should still be performed to carefully assess the pros and cons of BGs in neuroregeneration strategies.


Author(s):  
Shirley Masand ◽  
Jian Chen ◽  
Melitta Schachner ◽  
David I. Shreiber

Despite this innate regenerative potential of the peripheral nervous system, functional recovery often remains incomplete, especially as the severity of injury increases. This has been attributed to a number of sources including the ingrowth of fibrous scar tissue, lack of mechanical support for emerging neurites, and the malrouted reinnervation of neurites towards inappropriate targets. While research in the field is broad, it is generally accepted that an optimal nerve guidance conduit to encourage regeneration should include both biological and mechanical support for emerging neurites and glia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yin Li ◽  
Zhenjiang Ma ◽  
Ya Ren ◽  
Dezhi Lu ◽  
Tao Li ◽  
...  

A peripheral nerve injury (PNI) has severe and profound effects on the life of a patient. The therapeutic approach remains one of the most challenging clinical problems. In recent years, many constructive nerve regeneration schemes are proposed at home and abroad. Nerve tissue engineering plays an important role. It develops an ideal nerve substitute called artificial nerve. Given the complexity of nerve regeneration, this review summarizes the pathophysiology and tissue-engineered repairing strategies of the PNI. Moreover, we discussed the scaffolds and seed cells for neural tissue engineering. Furthermore, we have emphasized the role of 3D printing in tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document