scholarly journals On the Interplay of the DNA Replication Program and the Intra-S Phase Checkpoint Pathway

Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 94 ◽  
Author(s):  
Diletta Ciardo ◽  
Arach Goldar ◽  
Kathrin Marheineke

DNA replication in eukaryotes is achieved by the activation of multiple replication origins which needs to be precisely coordinated in space and time. This spatio-temporal replication program is regulated by many factors to maintain genome stability, which is frequently threatened through stresses of exogenous or endogenous origin. Intra-S phase checkpoints monitor the integrity of DNA synthesis and are activated when replication forks are stalled. Their activation leads to the stabilization of forks, to the delay of the replication program by the inhibition of late firing origins, and the delay of G2/M phase entry. In some cell cycles during early development these mechanisms are less efficient in order to allow rapid cell divisions. In this article, we will review our current knowledge of how the intra-S phase checkpoint regulates the replication program in budding yeast and metazoan models, including early embryos with rapid S phases. We sum up current models on how the checkpoint can inhibit origin firing in some genomic regions, but allow dormant origin activation in other regions. Finally, we discuss how numerical and theoretical models can be used to connect the multiple different actors into a global process and to extract general rules.

2001 ◽  
Vol 12 (5) ◽  
pp. 1257-1274 ◽  
Author(s):  
Tadayuki Takeda ◽  
Keiko Ogino ◽  
Kazuo Tatebayashi ◽  
Hideo Ikeda ◽  
Ken-ichi Arai ◽  
...  

Hsk1, Saccharomyces cerevisiae Cdc7-related kinase in Shizosaccharomyces pombe, is required for G1/S transition and its kinase activity is controlled by the regulatory subunit Dfp1/Him1. Analyses of a newly isolated temperature-sensitive mutant, hsk1-89, reveal that Hsk1 plays crucial roles in DNA replication checkpoint signaling and maintenance of proper chromatin structures during mitotic S phase through regulating the functions of Rad3 (ATM)-Cds1 and Rad21 (cohesin), respectively, in addition to expected essential roles for initiation of mitotic DNA replication through phosphorylating Cdc19 (Mcm2). Checkpoint defect inhsk1-89 is indicated by accumulation ofcut cells at 30°C. hsk1-89 displays synthetic lethality in combination with rad3 deletion, indicating that survival of hsk1-89 depends on Rad3-dependent checkpoint pathway. Cds1 kinase activation, which normally occurs in response to early S phase arrest by nucleotide deprivation, is largely impaired in hsk1-89. Furthermore, Cds1-dependent hyperphosphorylation of Dfp1 in response to hydroxyurea arrest is eliminated in hsk1-89, suggesting that sufficient activation of Hsk1-Dfp1 kinase is required for S phase entry and replication checkpoint signaling.hsk1-89 displays apparent defect in mitosis at 37°C leading to accumulation of cells with near 2C DNA content and with aberrant nuclear structures. These phenotypes are similar to those ofrad21-K1 and are significantly enhanced in ahsk1-89 rad21-K1 double mutant. Consistent with essential roles of Rad21 as a component for the cohesin complex, sister chromatid cohesion is partially impaired in hsk1-89, suggesting a possibility that infrequent origin firing of the mutant may affect the cohesin functions during S phase.


2008 ◽  
Vol 19 (10) ◽  
pp. 4374-4382 ◽  
Author(s):  
Ling Yin ◽  
Alexandra Monica Locovei ◽  
Gennaro D'Urso

In the fission yeast, Schizosaccharomyces pombe, blocks to DNA replication elongation trigger the intra-S phase checkpoint that leads to the activation of the Cds1 kinase. Cds1 is required to both prevent premature entry into mitosis and to stabilize paused replication forks. Interestingly, although Cds1 is essential to maintain the viability of mutants defective in DNA replication elongation, mutants defective in DNA replication initiation require the Chk1 kinase. This suggests that defects in DNA replication initiation can lead to activation of the DNA damage checkpoint independent of the intra-S phase checkpoint. This might result from reduced origin firing that leads to an increase in replication fork stalling or replication fork collapse that activates the G2 DNA damage checkpoint. We refer to the Chk1-dependent, Cds1-independent phenotype as the rid phenotype (for replication initiation defective). Chk1 is active in rid mutants, and rid mutant viability is dependent on the DNA damage checkpoint, and surprisingly Mrc1, a protein required for activation of Cds1. Mutations in Mrc1 that prevent activation of Cds1 have no effect on its ability to support rid mutant viability, suggesting that Mrc1 has a checkpoint-independent role in maintaining the viability of mutants defective in DNA replication initiation.


2001 ◽  
Vol 154 (5) ◽  
pp. 913-924 ◽  
Author(s):  
Carmen Feijoo ◽  
Clare Hall-Jackson ◽  
Rong Wu ◽  
David Jenkins ◽  
Jane Leitch ◽  
...  

Checkpoints maintain order and fidelity in the cell cycle by blocking late-occurring events when earlier events are improperly executed. Here we describe evidence for the participation of Chk1 in an intra-S phase checkpoint in mammalian cells. We show that both Chk1 and Chk2 are phosphorylated and activated in a caffeine-sensitive signaling pathway during S phase, but only in response to replication blocks, not during normal S phase progression. Replication block–induced activation of Chk1 and Chk2 occurs normally in ataxia telangiectasia (AT) cells, which are deficient in the S phase response to ionizing radiation (IR). Resumption of synthesis after removal of replication blocks correlates with the inactivation of Chk1 but not Chk2. Using a selective small molecule inhibitor, cells lacking Chk1 function show a progressive change in the global pattern of replication origin firing in the absence of any DNA replication. Thus, Chk1 is apparently necessary for an intra-S phase checkpoint, ensuring that activation of late replication origins is blocked and arrested replication fork integrity is maintained when DNA synthesis is inhibited.


2014 ◽  
Vol 10 (10) ◽  
pp. 1193-1202 ◽  
Author(s):  
Rui-Hong Wang ◽  
Tyler J. Lahusen ◽  
Qiang Chen ◽  
Xiaoling Xu ◽  
Lisa M. Miller Jenkins ◽  
...  

2007 ◽  
Vol 27 (17) ◽  
pp. 6053-6067 ◽  
Author(s):  
Erin Olson ◽  
Christian J. Nievera ◽  
Enbo Liu ◽  
Alan Yueh-Luen Lee ◽  
Longchuan Chen ◽  
...  

ABSTRACT The Mre11/Rad50/Nbs1 complex (MRN) plays an essential role in the S-phase checkpoint. Cells derived from patients with Nijmegen breakage syndrome and ataxia telangiectasia-like disorder undergo radioresistant DNA synthesis (RDS), failing to suppress DNA replication in response to ionizing radiation (IR). How MRN affects DNA replication to control the S-phase checkpoint, however, remains unclear. We demonstrate that MRN directly interacts with replication protein A (RPA) in unperturbed cells and that the interaction is regulated by cyclin-dependent kinases. We also show that this interaction is needed for MRN to correctly localize to replication centers. Abolishing the interaction of Mre11 with RPA leads to pronounced RDS without affecting phosphorylation of Nbs1 or SMC1 following IR. Moreover, MRN is recruited to sites at or adjacent to replication origins by RPA and acts there to inhibit new origin firing upon IR. These studies suggest a direct role of MRN at origin-proximal sites to control DNA replication initiation in response to DNA damage, thereby providing an important mechanism underlying the intra-S-phase checkpoint in mammalian cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 450-450
Author(s):  
Han Liu ◽  
Shugaku Takeda ◽  
Rakesh Kumar ◽  
Todd Westergard ◽  
Tej Pandita ◽  
...  

Abstract Abstract 450 Cell cycle checkpoints are implemented to safeguard our genome. Accordingly, checkpoint deregulation can result in human cancers. Although the S phase checkpoint plays an essential role in preventing genetic aberrations, the detailed molecular makeup of this signaling cascade, especially how it is executed in higher eukaryotes remains largely unknown. Human chromosome band 11q23 translocation disrupting the MLL gene leads to poor prognostic leukemias. MLL is a histone H3 lysine 4 methyl transferase that maintains HOX gene expression. The importance of HOX gene deregulation in MLL leukemogenesis has been intensively investigated. However, physiological murine MLL leukemia knockin models have indicated that incurred HOX gene aberration alone is insufficient to initiate MLL leukemia. Thus, additional signaling pathways must be involved, which remains to be discovered. Here, we demonstrate a novel function of MLL in executing the S phase DNA damage checkpoint response. We found that MLL was accumulated in the S phase upon DNA damage triggered by various agents including UV, ionizing radiation, etoposide, hydroxyurea and aphidocholin, which was observed in all of the cell lines examined including HeLa, 293T, NIH 3T3, and BJ-1 cells. During a normal cell cycle progression, MLL was recognized and degraded by the SCFskp2 proteasome in the S phase. Upon DNA damage, MLL was phosphorylated and thereby no longer recognized by SCFskp2, leading to its ultimate accumulation in the S phase. To determine the importance of DNA-damage induced MLL accumulation, we investigated whether MLL deficiency compromises S phase checkpoint in response to DNA damage. MLL knockout or knockdown cells displayed radioresistant DNA synthesis (RDS) and chromatid type genomic abnormalities (two hallmarks of S phase checkpoint defect). Using genetically well-defined mouse embryonic fibroblasts (MEFs), we identified ATR, but not ATM or DNA-PK, as the kinase required for the MLL accumulation. Furthermore, MLL with mutation of the ATR phosphorylation site failed to accumulate upon DNA damage and thus was unable to rescue the RDS and genomic instability phenotypes of MLL deficient cells. In summary, MLL is phosphorylated by ATR upon DNA damage, which disrupts its interaction with SCFskp2, leading to its accumulation in the S phase that is essential for the proper DNA damage checkpoint execution. We further dissected the mechanism by which MLL participates in the S phase checkpoint execution. We demonstrated that ATR -mediated phosphorylation of Chk1 remained intact in the absence of MLL, which positions MLL downstream to the DNA damage signaling cascade. CDC45 loading onto the replication origin constitutes the critical step of origin firing and thus ushers DNA replication - a step that is normally inhibited upon DNA damage signaling. Using co-immunoprecipitation and chromatin-immunoprecipitation assays, we demonstrated that S phase-accumulated MLL interacts with the MCM complex at the late replication origin, prevents the loading of CDC45, and thereby inhibits DNA replication. In other words, CDC45 was aberrantly loaded in the absence of MLL, which explains the observed RDS defects associated with the loss of MLL. To determine whether MLL leukemogenic fusions incur S phase checkpoint defects, we employed a MLL-CBP knockin mouse model. The RDS phenotype was observed in murine myeloid progenitor cells (MPCs) with haploinsufficiency of MLL. More importantly, MPCs expressing one knockin allele of MLL-CBP exhibited even greater S phase checkpoint defects, suggesting that MLL fusion further compromised DNA damage checkpoint. Taken together, our study establishes a previously unrecognized activity of MLL in direct inhibition of late origin firing upon DNA damage signaling, the deregulation of which may contribute to the pathogenesis of MLL leukemias. Disclosures: No relevant conflicts of interest to declare.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 342
Author(s):  
Lihi Gershon ◽  
Martin Kupiec

Acetylation on lysine 56 of histone H3 of the yeast Saccharomyces cerevisiae has been implicated in many cellular processes that affect genome stability. Despite being the object of much research, the complete scope of the roles played by K56 acetylation is not fully understood even today. The acetylation is put in place at the S-phase of the cell cycle, in order to flag newly synthesized histones that are incorporated during DNA replication. The signal is removed by two redundant deacetylases, Hst3 and Hst4, at the entry to G2/M phase. Its crucial location, at the entry and exit points of the DNA into and out of the nucleosome, makes this a central modification, and dictates that if acetylation and deacetylation are not well concerted and executed in a timely fashion, severe genomic instability arises. In this review, we explore the wealth of information available on the many roles played by H3K56 acetylation and the deacetylases Hst3 and Hst4 in DNA replication and repair.


2021 ◽  
Vol 22 (10) ◽  
pp. 5195
Author(s):  
Hui Zhang

In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.


Sign in / Sign up

Export Citation Format

Share Document