scholarly journals Regulation of DNA Replication Licensing and Re-Replication by Cdt1

2021 ◽  
Vol 22 (10) ◽  
pp. 5195
Author(s):  
Hui Zhang

In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1 for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2 are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2 facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability by directly interacting with PCNA during DNA replication and repair synthesis.

Author(s):  
Liu Mei ◽  
Jeanette Gowen Cook

The cell division cycle must be strictly regulated during both development and adult maintenance, and efficient and well-controlled DNA replication is a key event in the cell cycle. DNA replication origins are prepared in G1 phase of the cell cycle in a process known as origin licensing which is essential for DNA replication initiation in the subsequent S phase. Appropriate origin licensing includes: (1) Licensing enough origins at adequate origin licensing speed to complete licensing before G1 phase ends; (2) Licensing origins such that they are well-distributed on all chromosomes. Both aspects of licensing are critical for replication efficiency and accuracy. In this minireview, we will discuss recent advances in defining how origin licensing speed and distribution are critical to ensure DNA replication completion and genome stability.


2019 ◽  
Author(s):  
Jeziel D. Damasceno ◽  
Catarina A. Marques ◽  
Dario Beraldi ◽  
Kathryn Crouch ◽  
Craig Lapsley ◽  
...  

AbstractOnce every cell cycle, DNA replication takes place to allow cells to duplicate their genome and segregate the two resulting copies into offspring cells. In eukaryotes, the number of DNA replication initiation loci, termed origins, is proportional to chromosome size. However, previous studies have suggested that in Leishmania, a group of single-celled eukaryotic parasites, DNA replication starts from just a single origin per chromosome, which is predicted to be insufficient to secure complete genome duplication within S phase. Here, we show that the paucity of origins activated in early S phase is balanced by DNA synthesis activity outside S phase. Simultaneous recruitment of acetylated histone H3 (AcH3), modified base J and the kinetochore factor KKT1 is exclusively found at the origins used in early S phase, while subtelomeric DNA replication can only be linked to AcH3 and displays persistent activity through the cell cycle, including in G2/M and G1 phases. We also show that subtelomeric DNA replication, unlike replication from the previously mapped origins, is sensitive to hydroxyurea and dependent on subunits of the 9-1-1 complex. Our work indicates that Leishmania genome transmission relies on an unconventional DNA replication programme, which may have implications for genome stability in this important parasite.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Soumitra Sau ◽  
Batia Liefshitz ◽  
Martin Kupiec

ABSTRACT The PCNA (proliferating cell nuclear antigen) ring plays central roles during DNA replication and repair. The yeast Elg1 RFC-like complex (RLC) is the principal unloader of chromatin-bound PCNA and thus plays a central role in maintaining genome stability. Here we identify a role for Elg1 in the unloading of PCNA during DNA damage. Using DNA damage checkpoint (DC)-inducible and replication checkpoint (RC)-inducible strains, we show that Elg1 is essential for eliciting the signal in the DC branch. In the absence of Elg1 activity, the Rad9 (53BP1) and Dpb11 (TopBP1) adaptor proteins are recruited but fail to be phosphorylated by Mec1 (ATR), resulting in a lack of checkpoint activation. The chromatin immunoprecipitation of PCNA at the Lac operator sites reveals that accumulated local PCNA influences the checkpoint activation process in elg1 mutants. Our data suggest that Elg1 participates in a mechanism that may coordinate PCNA unloading during DNA repair with DNA damage checkpoint induction. IMPORTANCE The Elg1protein forms an RFC-like complex in charge of unloading PCNA from chromatin during DNA replication and repair. Mutations in the ELG1 gene caused genomic instability in all organisms tested and cancer in mammals. Here we show that Elg1 plays a role in the induction of the DNA damage checkpoint, a cellular response to DNA damage. We show that this defect is due to a defect in the signal amplification process during induction. Thus, cells coordinate the cell's response and the PCNA unloading through the activity of Elg1.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3349-3349
Author(s):  
Stephen J. Orr ◽  
Terry Gaymes ◽  
Rong Wang ◽  
Barbara Czepulkowski ◽  
Darius Ladon ◽  
...  

Abstract Normal DNA replication must be accurate and occur only once per cell cycle. Sites of DNA replication are specified by binding the origin recognition complex, that includes minichromosome maintenance (MCM) proteins. Paradoxically, in higher eukaryotes MCM proteins are present in >20 fold excess of that required for DNA replication. They are also downregulated by elevated expression of proteins such as cyclin E that occurs in cancers, including AML and breast cancer. We investigated why human cells need “excess” MCM proteins and whether the reduction of MCM protein levels might contribute to a malignant phenotype. We determined the consequences of reducing the levels of MCM proteins in primary human T cells in which cell cycle controls and DNA damage responses are normal. Mass spectrometry sequencing of chromatin/nuclear matrix-bound proteins and western blotting identified that Mcm7 is not present in quiescent, normal primary human T cells. Mcm7 is induced in mid G1after the G0→G1 commitment point, the point beyond which T cells are committed to entering the cell cycle. Reduction of Mcm7 with siRNA to <5% of normal during G0→G1→S-phase reduces chromatin-binding of each of the MCM proteins that form the DNA helicase. However, these cells still enter S-phase and replicate DNA. Reducing MCM levels by titrating siRNA causes dose-dependent DNA-damage responses involving activation of ATR & ATM and Chk1 & Chk2. However, cells depleted of Mcm7 do not undergo apoptosis, rather reducing MCM levels even by 50% causes gross non-clonal chromosomal abnormalities normally found in genomic instability syndromes. M-FISH identified chromosome translocations, as well as loss and gain of individual chromosomes, which can occur individually or together in the same cell. Reducing MCM levels also causes misrepair by non-homologous end joining (NHEJ), and both NHEJ and homologous recombination (HR) are necessary for chromosomal abnormalities to occur. Therefore, “excess” MCM proteins that are present in a normal, proliferating cell are necessary for maintaining genome stability and reduction of MCM loading onto DNA that occurs in cancers is sufficient to cause genomic instability.


2016 ◽  
Vol 113 (26) ◽  
pp. E3676-E3685 ◽  
Author(s):  
Nicholas A. Willis ◽  
Chunshui Zhou ◽  
Andrew E. H. Elia ◽  
Johanne M. Murray ◽  
Antony M. Carr ◽  
...  

The cellular response to DNA damage during S-phase regulates a complicated network of processes, including cell-cycle progression, gene expression, DNA replication kinetics, and DNA repair. In fission yeast, this S-phase DNA damage response (DDR) is coordinated by two protein kinases: Rad3, the ortholog of mammalian ATR, and Cds1, the ortholog of mammalian Chk2. Although several critical downstream targets of Rad3 and Cds1 have been identified, most of their presumed targets are unknown, including the targets responsible for regulating replication kinetics and coordinating replication and repair. To characterize targets of the S-phase DDR, we identified proteins phosphorylated in response to methyl methanesulfonate (MMS)-induced S-phase DNA damage in wild-type, rad3∆, and cds1∆ cells by proteome-wide mass spectrometry. We found a broad range of S-phase–specific DDR targets involved in gene expression, stress response, regulation of mitosis and cytokinesis, and DNA replication and repair. These targets are highly enriched for proteins required for viability in response to MMS, indicating their biological significance. Furthermore, the regulation of these proteins is similar in fission and budding yeast, across 300 My of evolution, demonstrating a deep conservation of S-phase DDR targets and suggesting that these targets may be critical for maintaining genome stability in response to S-phase DNA damage across eukaryotes.


2008 ◽  
Vol 19 (10) ◽  
pp. 4374-4382 ◽  
Author(s):  
Ling Yin ◽  
Alexandra Monica Locovei ◽  
Gennaro D'Urso

In the fission yeast, Schizosaccharomyces pombe, blocks to DNA replication elongation trigger the intra-S phase checkpoint that leads to the activation of the Cds1 kinase. Cds1 is required to both prevent premature entry into mitosis and to stabilize paused replication forks. Interestingly, although Cds1 is essential to maintain the viability of mutants defective in DNA replication elongation, mutants defective in DNA replication initiation require the Chk1 kinase. This suggests that defects in DNA replication initiation can lead to activation of the DNA damage checkpoint independent of the intra-S phase checkpoint. This might result from reduced origin firing that leads to an increase in replication fork stalling or replication fork collapse that activates the G2 DNA damage checkpoint. We refer to the Chk1-dependent, Cds1-independent phenotype as the rid phenotype (for replication initiation defective). Chk1 is active in rid mutants, and rid mutant viability is dependent on the DNA damage checkpoint, and surprisingly Mrc1, a protein required for activation of Cds1. Mutations in Mrc1 that prevent activation of Cds1 have no effect on its ability to support rid mutant viability, suggesting that Mrc1 has a checkpoint-independent role in maintaining the viability of mutants defective in DNA replication initiation.


2005 ◽  
Vol 25 (9) ◽  
pp. 3553-3562 ◽  
Author(s):  
Randi G. Syljuåsen ◽  
Claus Storgaard Sørensen ◽  
Lasse Tengbjerg Hansen ◽  
Kasper Fugger ◽  
Cecilia Lundin ◽  
...  

ABSTRACT Human checkpoint kinase 1 (Chk1) is an essential kinase required to preserve genome stability. Here, we show that Chk1 inhibition by two distinct drugs, UCN-01 and CEP-3891, or by Chk1 small interfering RNA (siRNA) leads to phosphorylation of ATR targets. Chk1-inhibition triggered rapid, pan-nuclear phosphorylation of histone H2AX, p53, Smc1, replication protein A, and Chk1 itself in human S-phase cells. These phosphorylations were inhibited by ATR siRNA and caffeine, but they occurred independently of ATM. Chk1 inhibition also caused an increased initiation of DNA replication, which was accompanied by increased amounts of nonextractable RPA protein, formation of single-stranded DNA, and induction of DNA strand breaks. Moreover, these responses were prevented by siRNA-mediated downregulation of Cdk2 or the replication initiation protein Cdc45, or by addition of the CDK inhibitor roscovitine. We propose that Chk1 is required during normal S phase to avoid aberrantly increased initiation of DNA replication, thereby protecting against DNA breakage. These results may help explain why Chk1 is an essential kinase and should be taken into account when drugs to inhibit this kinase are considered for use in cancer treatment.


Microbiology ◽  
2009 ◽  
Vol 155 (11) ◽  
pp. 3748-3757 ◽  
Author(s):  
Devanand Kumar ◽  
Neha Minocha ◽  
Kalpana Rajanala ◽  
Swati Saha

DNA replication in eukaryotes is a highly conserved process marked by the licensing of multiple origins, with pre-replication complex assembly in G1 phase, followed by the onset of replication at these origins in S phase. The two strands replicate by different mechanisms, and DNA synthesis is brought about by the activity of the replicative DNA polymerases Pol δ and Pol ϵ. Proliferating cell nuclear antigen (PCNA) augments the processivity of these polymerases by serving as a DNA sliding clamp protein. This study reports the cloning of PCNA from the protozoan Leishmania donovani, which is the causative agent of the systemic disease visceral leishmaniasis. PCNA was demonstrated to be robustly expressed in actively proliferating L. donovani promastigotes. We found that the protein was present primarily in the nucleus throughout the cell cycle, and it was found in both proliferating procyclic and metacyclic promastigotes. However, levels of expression of PCNA varied through cell cycle progression, with maximum expression evident in G1 and S phases. The subnuclear pattern of expression of PCNA differed in different stages of the cell cycle; it formed distinct subnuclear foci in S phase, while it was distributed in a more diffuse pattern in G2/M phase and post-mitotic phase cells. These subnuclear foci are the sites of active DNA replication, suggesting that replication factories exist in Leishmania, as they do in higher eukaryotes, thus opening avenues for investigating other Leishmania proteins that are involved in DNA replication as part of these replication factories.


2012 ◽  
Vol 443 (1) ◽  
pp. 13-26 ◽  
Author(s):  
Rebecca M. Jones ◽  
Eva Petermann

Prevention and repair of DNA damage is essential for maintenance of genomic stability and cell survival. DNA replication during S-phase can be a source of DNA damage if endogenous or exogenous stresses impair the progression of replication forks. It has become increasingly clear that DNA-damage-response pathways do not only respond to the presence of damaged DNA, but also modulate DNA replication dynamics to prevent DNA damage formation during S-phase. Such observations may help explain the developmental defects or cancer predisposition caused by mutations in DNA-damage-response genes. The present review focuses on molecular mechanisms by which DNA-damage-response pathways control and promote replication dynamics in vertebrate cells. In particular, DNA damage pathways contribute to proper replication by regulating replication initiation, stabilizing transiently stalled forks, promoting replication restart and facilitating fork movement on difficult-to-replicate templates. If replication fork progression fails to be rescued, this may lead to DNA damage and genomic instability via nuclease processing of aberrant fork structures or incomplete sister chromatid separation during mitosis.


2006 ◽  
Vol 17 (4) ◽  
pp. 1540-1548 ◽  
Author(s):  
Deanna M. Koepp ◽  
Andrew C. Kile ◽  
Swarna Swaminathan ◽  
Veronica Rodriguez-Rivera

Ubiquitin-mediated proteolysis plays a key role in many pathways inside the cell and is particularly important in regulating cell cycle transitions. SCF (Skp1/Cul1/F-box protein) complexes are modular ubiquitin ligases whose specificity is determined by a substrate-binding F-box protein. Dia2 is a Saccharomyces cerevisiae F-box protein previously described to play a role in invasive growth and pheromone response pathways. We find that deletion of DIA2 renders cells cold-sensitive and subject to defects in cell cycle progression, including premature S-phase entry. Consistent with a role in regulating DNA replication, the Dia2 protein binds replication origins. Furthermore, the dia2 mutant accumulates DNA damage in both S and G2/M phases of the cell cycle. These defects are likely a result of the absence of SCFDia2 activity, as a Dia2 ΔF-box mutant shows similar phenotypes. Interestingly, prolonging G1-phase in dia2 cells prevents the accumulation of DNA damage in S-phase. We propose that Dia2 is an origin-binding protein that plays a role in regulating DNA replication.


Sign in / Sign up

Export Citation Format

Share Document