scholarly journals The Role of Insulation in Patterning Gene Expression

Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 767 ◽  
Author(s):  
Özdemir ◽  
Gambetta

Development is orchestrated by regulatory elements that turn genes ON or OFF in precise spatial and temporal patterns. Many safety mechanisms prevent inappropriate action of a regulatory element on the wrong gene promoter. In flies and mammals, dedicated DNA elements (insulators) recruit protein factors (insulator binding proteins, or IBPs) to shield promoters from regulatory elements. In mammals, a single IBP called CCCTC-binding factor (CTCF) is known, whereas genetic and biochemical analyses in Drosophila have identified a larger repertoire of IBPs. How insulators function at the molecular level is not fully understood, but it is currently thought that they fold chromosomes into conformations that affect regulatory element-promoter communication. Here, we review the discovery of insulators and describe their properties. We discuss recent genetic studies in flies and mice to address the question: Is gene insulation important for animal development? Comparing and contrasting observations in these two species reveal that they have different requirements for insulation, but that insulation is a conserved and critical gene regulation strategy.

1990 ◽  
Vol 10 (9) ◽  
pp. 4826-4836 ◽  
Author(s):  
R A Horlick ◽  
G M Hobson ◽  
J H Patterson ◽  
M T Mitchell ◽  
P A Benfield

We have previously reported that the rat brain creatine kinase (ckb) gene promoter contains an AT-rich sequence that is a binding site for a protein called TARP (TA-rich recognition protein). This AT-rich segment is a positively acting regulatory element for the ckb promoter. A similar AT-rich DNA segment is found at the 3' end of the 5' muscle-specific enhancer of the rat muscle creatine kinase (ckm) gene and has been shown to be necessary for full muscle-specific enhancer activity. In this report, we show that TARP binds not only to the ckb promoter but also to the AT-rich segment at the 3' end of the muscle-specific ckm enhancer. A second, weaker TARP-binding site was identified in the ckm enhancer and lies at the 5' end of the minimal enhancer segment. TARP was found in both muscle cells (C2 and L6 myotubes) and nonmuscle (HeLa) cells and appeared to be indistinguishable from both sources, as judged by gel retardation and footprinting assays. The TARP-binding sites in the ckm enhancer and the ckb promoter were found to be functionally interchangeable. We propose that TARP is active in both muscle and nonmuscle cells and that it is one of many potential activators that may interact with muscle-specific regulators to determine the myogenic phenotype.


2017 ◽  
Author(s):  
D.A. Turner ◽  
L. Alonso-Crisostomo ◽  
M. Girgin ◽  
P. Baillie-Johnson ◽  
C. R. Glodowski ◽  
...  

AbstractEstablishment of the three body axes is a critical step during animal development. In mammals, genetic studies have shown that a combination of precisely deployed signals from extraembryonic tissues position the anteroposterior axis (AP) within the embryo and lead to the emergence of the dorsoventral (DV) and left-right (LR) axes. We have used Gastruloids, embryonic organoids, as a model system to understand this process and find that they are able to develop AP, DV and LR axes as well as to undergo axial elongation in a manner that mirror embryos. The Gastruloids can be grown for 160 hours and form derivatives from ectoderm, mesoderm and endoderm. We focus on the AP axis and show that in the Gastruloids this axis is registered in the expression of T/Bra at one pole that corresponds to the tip of the elongation. We find that localisation of T/Bra expression depends on the combined activities of Wnt/β-Catenin and Nodal/Smad2,3 signalling, and that BMP signalling is dispensable for this process. Furthermore, AP axis specification occurs in the absence of both extraembryonic tissues and of localised sources of signalling. Our experiments show that Nodal, together with Wnt/β-Catenin signalling, is essential for the expression of T/Bra but that Wnt signalling has a separable activity in the elongation of the axis. The results lead us to suggest that, in the embryo, the role of the extraembryonic tissues might not be to induce the axes but to bias an intrinsic ability of the embryo to break its initial symmetry and organise its axes.One sentence summaryCulture of aggregates of defined number of Embryonic Stem cells leads to self-organised embryo-like structures which, in the absence of localised signalling from extra embryonic tissues and under the autonomous influence of Wnt and Nodal signalling, develop the three main axes of the body.


2019 ◽  
Vol 5 (1) ◽  
pp. eaau9739 ◽  
Author(s):  
Sandip De ◽  
Yuzhong Cheng ◽  
Ming-an Sun ◽  
Natalie D. Gehred ◽  
Judith A. Kassis

Polycomb group proteins (PcGs) drive target gene repression and form large chromatin domains. InDrosophila, DNA elements known as Polycomb group response elements (PREs) recruit PcGs to the DNA. We have shown that, within theinvected-engrailed(inv-en) Polycomb domain, strong, constitutive PREs are dispensable for Polycomb domain structure and function. We suggest that the endogenous chromosomal location imparts stability to this Polycomb domain. To test this possibility, a 79-kbentransgene was inserted into other chromosomal locations. This transgene is functional and forms a Polycomb domain. The spreading of the H3K27me3 repressive mark, characteristic of PcG domains, varies depending on the chromatin context of the transgene. Unlike at the endogenous locus, deletion of the strong, constitutive PREs from the transgene leads to both loss- and gain-of function phenotypes, demonstrating the important role of these regulatory elements. Our data show that chromatin context plays an important role in Polycomb domain structure and function.


1998 ◽  
Vol 18 (5) ◽  
pp. 2617-2628 ◽  
Author(s):  
Michael A. Dyer ◽  
Patrick J. Hayes ◽  
Margaret H. Baron

ABSTRACT The human embryonic β-like globin (ɛ-globin) gene is expressed in primitive erythroid cells of the yolk sac during the first few weeks of development. We have previously shown that developmental stage-specific expression of the ɛ-globin gene is mediated by multiple positive and negative regulatory elements upstream of the start of transcription. Of particular interest is one positive regulatory element, PRE II, that works together with other elements (PRE I and PRE V) to confer developmental stage- and/or tissue-specific expression on a minimal promoter. An ∼85- to 90-kDa PRE II binding factor (PREIIBF) was identified in the nuclei of erythroid cells and shown to bind specifically to a novel 19-bp region within PRE II; binding of this protein to PRE II resulted in bending of the target DNA and was required for promoter activation. In this report, we present the cDNA expression cloning of PREIIBF. The cDNA encodes a previously identified member of the HMG domain family of DNA binding proteins termed SSRP1. By a number of biochemical and immunological criteria, recombinant SSRP1 appears to be identical to the PREII binding factor from erythroid nuclei. A hallmark of HMG domain proteins is their ability to bend their target DNAs; therefore, as we speculated previously, DNA bending by SSRP1/PREIIBF may contribute to the mechanism by which PRE II synergizes with other regulatory elements located upstream and downstream. In contrast with reports from other investigators, we demonstrate that SSRP1 binds DNA with clear sequence specificity. Moreover, we show that SSRP1/PREIIBF lacks a classical activation domain but that binding by this protein to PRE II is required for activation of a minimal promoter in stable erythroid cell lines. These studies provide the first evidence that SSRP1 plays a role in transcriptional regulation. SSRP1/PREIIBF may serve an architectural function by helping to coordinate the assembly of a multiprotein complex required for stage-specific regulation of the human ɛ-globin gene.


Reproduction ◽  
2001 ◽  
pp. 41-48 ◽  
Author(s):  
CM Rodriguez ◽  
JL Kirby ◽  
BT Hinton

The epididymis exhibits region-specific as well as cell-specific patterns of gene expression within the epithelium. The spatial and temporal patterns of gene expression originate during development and are critical to the formation and maintenance of a fully functional epididymis. Despite the number of mechanisms reported to contribute to the regulation of eukaryotic gene expression, little is known about the specific mechanisms involved in the control of epididymal gene expression. This review will outline some of the cis-DNA elements and associated transcription factors that have been identified in the epididymis, in addition to discussing the potential role of co-regulator molecules and changes in chromatin structure as critical control points of gene expression. Although gene expression can be controlled at several points, discussion will focus on gene regulation at the transcriptional level. The role of post-transcriptional control, with particular attention to mRNA stability, will also be discussed.


2020 ◽  
Author(s):  
Jaya Krishnan ◽  
Chris W. Seidel ◽  
Ning Zhang ◽  
Jake VanCampen ◽  
Robert Peuß ◽  
...  

AbstractChanges in cis-regulatory elements play important roles in adaptation and phenotypic evolution. However, their contribution to metabolic adaptation of organisms is less understood. Here we have utilized a unique vertebrate model, Astyanax mexicanus, different morphotypes of which survive in nutrient-rich surface and nutrient-deprived cave water to uncover gene regulatory networks in metabolic adaptation. We performed genome-wide epigenetic profiling in the liver tissue of one surface and two independently derived cave populations. We find that many cis-regulatory elements differ in their epigenetic status/chromatin accessibility between surface fish and cavefish, while the two independently derived cave populations have evolved remarkably similar regulatory signatures. These differentially accessible regions are associated with genes of key pathways related to lipid metabolism, circadian rhythm and immune system that are known to be altered in cavefish. Using in vitro and in vivo functional testing of the candidate cis-regulatory elements, we find that genetic changes within them cause quantitative expression differences. We characterized one cis-regulatory element in the hpdb gene and found a genomic deletion in cavefish that abolishes binding of the transcriptional repressor IRF2 in vitro and derepresses enhancer activity in reporter assays. Genetic experiments further validated a cis-mediated role of the enhancer and suggest a role of this deletion in the upregulation of hpdb in wild cavefish populations. Selection of this mutation in multiple independent cave populations supports its importance in the adaptation to the cave environment, providing novel molecular insights into the evolutionary trade-off between loss of pigmentation and adaptation to a food-deprived cave environment.


2021 ◽  
Author(s):  
Julian Stolper ◽  
Holly K. Voges ◽  
Michael See ◽  
Neda Rahmani Mehdiabadi ◽  
Gulrez Chahal ◽  
...  

AbstractThere is growing evidence that mutations in non-coding cis-regulatory elements (CREs) disrupt proper development. However, little is known about human CREs that are crucial for cardiovascular development. To address this, we bioinformatically identified cardiovascular CREs based on the occupancy of the CRE by the homeodomain protein NKX2-5 and cardiac chromatin histone modifications. This search defined a highly conserved CRE within the FLT1 locus termed enFLT1. We show that the human enFLT1 is an enhancer capable of driving reporter transgene expression in vivo throughout the developing cardiovascular system of medaka. Deletion of the human enFLT1 enhancer (ΔenFLT1) triggered molecular perturbations in extracellular matrix organisation and blood vessel morphogenesis in vitro in endothelial cells derived from human embryonic stem cells and vascular defects in vivo in medaka. These findings highlight the crucial role of the human FLT1 enhancer and its function as a regulator and buffer of transcriptional regulation in cardiovascular development.


2007 ◽  
Vol 54 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Wiesława Widłak ◽  
Natalia Vydra ◽  
Volha Dudaladava ◽  
Dorota Scieglińska ◽  
Bolesław Winiarski ◽  
...  

The Hsp70.2/Hst70 gene, which belongs to the 70 kDa heat-shock protein (HSP) family, is expressed specifically in primary spermatocytes and spermatids. The regulatory elements required for a high level of testis-specific expression of the gene are placed between the two major transcription start sites T1 and T2 (approximately 350 and 115 bp upstream of the starting ATG codon). Here we have shown that sequences proximal to the exon1/intron splicing site in the 5' untranslated region of the Hsp70.2/Hst70 gene, which include a highly conserved element called box B, are required for efficient expression of the chloramphenicol acetyltransferase reporter gene in testes of transgenic mice. However, in spite of the drastically reduced overall activity, the stage-specific expression pattern of the transgene was preserved after removal of these sequences. We have also shown that GC-box located downstream of the box B (approximately 210 bp upstream of the starting ATG codon) is indispensable for efficient expression of the Hsp70.2/Hst70 gene promoter in spermatogenic cells. The GC-box specifically binds proteins present in nuclear extracts from testes (putatively Sp1-like factors). A change in the pattern of such GC-box-interacting factors corresponds to activation of the Hsp70.2/Hst70 gene, confirming the importance of this regulatory element.


1990 ◽  
Vol 10 (9) ◽  
pp. 4826-4836
Author(s):  
R A Horlick ◽  
G M Hobson ◽  
J H Patterson ◽  
M T Mitchell ◽  
P A Benfield

We have previously reported that the rat brain creatine kinase (ckb) gene promoter contains an AT-rich sequence that is a binding site for a protein called TARP (TA-rich recognition protein). This AT-rich segment is a positively acting regulatory element for the ckb promoter. A similar AT-rich DNA segment is found at the 3' end of the 5' muscle-specific enhancer of the rat muscle creatine kinase (ckm) gene and has been shown to be necessary for full muscle-specific enhancer activity. In this report, we show that TARP binds not only to the ckb promoter but also to the AT-rich segment at the 3' end of the muscle-specific ckm enhancer. A second, weaker TARP-binding site was identified in the ckm enhancer and lies at the 5' end of the minimal enhancer segment. TARP was found in both muscle cells (C2 and L6 myotubes) and nonmuscle (HeLa) cells and appeared to be indistinguishable from both sources, as judged by gel retardation and footprinting assays. The TARP-binding sites in the ckm enhancer and the ckb promoter were found to be functionally interchangeable. We propose that TARP is active in both muscle and nonmuscle cells and that it is one of many potential activators that may interact with muscle-specific regulators to determine the myogenic phenotype.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
David J. Bunyan ◽  
Evelien Gevers ◽  
James I. Hobbs ◽  
Philippa J. Duncan-Flavell ◽  
Rachel J. Howarth ◽  
...  

Abstract Background Transcriptional regulation of the SHOX gene is highly complex. Much of our understanding has come from the study of copy number changes of conserved non-coding sequences both upstream and downstream of the gene. Downstream deletions have been frequently reported in patients with Leri–Weill dyschondrosteosis or idiopathic short stature. In contrast, there are only four cases in the literature of upstream deletions that remove regulatory elements. Although duplications flanking the SHOX gene have also been reported, their pathogenicity is more difficult to establish. To further evaluate the role of flanking copy number variants in SHOX-related disorders, we describe nine additional patients from a large SHOX diagnostic cohort. Results The nine cases presented here include five with duplications (two upstream of SHOX and three downstream), one with a downstream triplication and three with upstream deletions. Two of the deletions remove a single conserved non-coding element (CNE-3) while the third does not remove any known regulatory element but is just 4 kb upstream of SHOX, and the deleted region may be important in limb bud development. We also describe six families with novel sequence gains flanking SHOX. Three families had increased dosage of a proposed regulatory element approximately 380 kb downstream of SHOX (X:970,000), including one family with the first ever reported triplication of this region. One family had two in cis downstream duplications co-segregating with LWD, and the two others had a duplication of just the upstream SHOX regulatory element CNE-5. Conclusions This study further extends our knowledge of the range of variants that may potentially cause SHOX-related phenotypes and may aid in determining the clinical significance of similar variants.


Sign in / Sign up

Export Citation Format

Share Document