scholarly journals Maintenance of Yeast Genome Integrity by RecQ Family DNA Helicases

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 205 ◽  
Author(s):  
Sonia Vidushi Gupta ◽  
Kristina Hildegard Schmidt

With roles in DNA repair, recombination, replication and transcription, members of the RecQ DNA helicase family maintain genome integrity from bacteria to mammals. Mutations in human RecQ helicases BLM, WRN and RecQL4 cause incurable disorders characterized by genome instability, increased cancer predisposition and premature adult-onset aging. Yeast cells lacking the RecQ helicase Sgs1 share many of the cellular defects of human cells lacking BLM, including hypersensitivity to DNA damaging agents and replication stress, shortened lifespan, genome instability and mitotic hyper-recombination, making them invaluable model systems for elucidating eukaryotic RecQ helicase function. Yeast and human RecQ helicases have common DNA substrates and domain structures and share similar physical interaction partners. Here, we review the major cellular functions of the yeast RecQ helicases Sgs1 of Saccharomyces cerevisiae and Rqh1 of Schizosaccharomyces pombe and provide an outlook on some of the outstanding questions in the field.

2004 ◽  
Vol 32 (6) ◽  
pp. 957-958 ◽  
Author(s):  
H.W. Mankouri ◽  
I.D. Hickson

RecQ helicases are evolutionarily conserved enzymes required for the maintenance of genome stability. Mutations in three of the five known human RecQ helicase genes cause distinct clinical disorders that are characterized by genome instability and cancer predisposition. Recent studies have begun to reveal the cellular roles of RecQ helicases and how these enzymes may prevent tumorigenesis at the molecular level.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 224 ◽  
Author(s):  
Julius Muellner ◽  
Kristina H. Schmidt

The two PIF1 family helicases in Saccharomyces cerevisiae, Rrm3, and ScPif1, associate with thousands of sites throughout the genome where they perform overlapping and distinct roles in telomere length maintenance, replication through non-histone proteins and G4 structures, lagging strand replication, replication fork convergence, the repair of DNA double-strand break ends, and transposable element mobility. ScPif1 and its fission yeast homolog Pfh1 also localize to mitochondria where they protect mitochondrial genome integrity. In addition to yeast serving as a model system for the rapid functional evaluation of human Pif1 variants, yeast cells lacking Rrm3 have proven useful for elucidating the cellular response to replication fork pausing at endogenous sites. Here, we review the increasingly important cellular functions of the yeast PIF1 helicases in maintaining genome integrity, and highlight recent advances in our understanding of their roles in facilitating fork progression through replisome barriers, their functional interactions with DNA repair, and replication stress response pathways.


2006 ◽  
Vol 26 (14) ◽  
pp. 5509-5517 ◽  
Author(s):  
Takashi Hishida ◽  
Tomoko Ohya ◽  
Yoshino Kubota ◽  
Yusuke Kamada ◽  
Hideo Shinagawa

ABSTRACT Proliferating cell nuclear antigen (PCNA), a sliding clamp required for processive DNA synthesis, provides attachment sites for various other proteins that function in DNA replication, DNA repair, cell cycle progression and chromatin assembly. It has been shown that differential posttranslational modifications of PCNA by ubiquitin or SUMO play a pivotal role in controlling the choice of pathway for rescuing stalled replication forks. Here, we explored the roles of Mgs1 and PCNA in replication fork rescue. We provide evidence that Mgs1 physically associates with PCNA and that Mgs1 helps suppress the RAD6 DNA damage tolerance pathway in the absence of exogenous DNA damage. We also show that PCNA sumoylation inhibits the growth of mgs1 rad18 double mutants, in which PCNA sumoylation and the Srs2 DNA helicase coordinately prevent RAD52-dependent homologous recombination. The proposed roles for Mgs1, Srs2, and modified PCNA during replication arrest highlight the importance of modulating the RAD6 and RAD52 pathways to avoid genome instability.


2020 ◽  
Author(s):  
Penghao Xu ◽  
Francesca Storici

ABSTRACTRibonucleoside monophosphate (rNMP) incorporation in DNA is a natural and prominent phenomenon resulting in DNA structural change and genome instability. While DNA polymerases have different rNMP incorporation rates, little is known whether these enzymes incorporate rNMPs following specific sequence patterns. In this study, we analyzed a series of rNMP incorporation datasets, generated from three rNMP mapping techniques, and obtained from Saccharomyces cerevisiae cells expressing wild-type or mutant replicative DNA polymerase and ribonuclease H2 genes. We performed computational analyses of rNMP sites around early and late firing autonomously replicating sequences (ARS’s) of the yeast genome, from which bidirectional, leading and lagging DNA synthesis starts. We find the preference of rNMP incorporation on the leading strand in wild-type DNA polymerase yeast cells. The leading/lagging-strand ratio of rNMP incorporation changes dramatically within 500 nt from ARS’s, highlighting the Pol δ - Pol ε handoff during early leading-strand synthesis. Furthermore, the pattern of rNMP incorporation is markedly distinct between the leading the lagging strand. Overall, our results show the different counts and patterns of rNMP incorporation during DNA replication from ARS, which reflects the different labor of division and rNMP incorporation pattern of Pol δ and Pol ε.


2018 ◽  
Vol 115 (43) ◽  
pp. 11024-11029 ◽  
Author(s):  
Sonia Silva ◽  
Lola P. Camino ◽  
Andrés Aguilera

R loops are nucleic acid structures comprising an DNA–RNA hybrid and a displaced single-stranded DNA. These structures may occur transiently during transcription, playing essential biological functions. However, persistent R loops may become pathological as they are important drivers of genome instability and have been associated with human diseases. The mitochondrial degradosome is a functionally conserved complex from bacteria to human mitochondria. It is composed of the ATP-dependent RNA and DNA helicase SUV3 and the PNPase ribonuclease, playing a central role in mitochondrial RNA surveillance and degradation. Here we describe a new role for the mitochondrial degradosome in preventing the accumulation of pathological R loops in the mitochondrial DNA, in addition to preventing dsRNA accumulation. Our data indicate that, similar to the molecular mechanisms acting in the nucleus, RNA surveillance mechanisms in the mitochondria are crucial to maintain its genome integrity by counteracting pathological R-loop accumulation.


2020 ◽  
Author(s):  
Irene Chiolo ◽  
Judith Miné-Hattab

A number of studies across different model systems revealed that chromatin undergoes significant changes in dynamics in response to DNA damage. These include local motion changes at damage sites, increased nuclear exploration of both damaged and undamaged loci, and directed motions to new nuclear locations associated with certain repair pathways. These studies also revealed the need for new analytical methods to identify directed motions in a context of mixed trajectories, and the importance of investigating nuclear dynamics over different time scales to identify diffusion regimes. Here we provide an overview of the current understanding of this field, including imaging and analytical methods developed to investigate nuclear dynamics in different contexts. These dynamics are essential for genome integrity. Identifying the molecular mechanisms responsible for these movements is key to understanding how their misregulation contributes to cancer and other genome instability disorders.


2003 ◽  
Vol 374 (3) ◽  
pp. 577-606 ◽  
Author(s):  
Csanád Z. BACHRATI ◽  
Ian D. HICKSON

The RecQ helicases represent a subfamily of DNA helicases that are highly conserved in evolution. Loss of RecQ helicase function leads to a breakdown in the maintenance of genome integrity, in particular hyper-recombination. Germ-line defects in three of the five known human RecQ helicases give rise to defined genetic disorders associated with cancer predisposition and/or premature aging. These are Bloom's syndrome, Werner's syndrome and Rothmund–Thomson syndrome, which are caused by defects in the genes BLM, WRN and RECQ4 respectively. Here we review the properties of RecQ helicases in organisms from bacteria to humans, with an emphasis on the biochemical functions of these enzymes and the range of protein partners that they operate with. We will discuss models in which RecQ helicases are required to protect against replication fork demise, either through prevention of fork breakdown or restoration of productive DNA synthesis.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Tulika Das ◽  
Surasree Pal ◽  
Agneyo Ganguly

Abstract RecQ helicases are a highly conserved class of DNA helicases that play crucial role in almost all DNA metabolic processes including replication, repair and recombination. They are able to unwind a wide variety of complex intermediate DNA structures that may result from cellular DNA transactions and hence assist in maintaining genome integrity. Interestingly, a huge number of recent reports suggest that many of the RecQ family helicases are directly or indirectly involved in regulating transcription and gene expression. On one hand, they can remove complex structures like R-loops, G-quadruplexes or RNA:DNA hybrids formed at the intersection of transcription and replication. On the other hand, emerging evidence suggests that they can also regulate transcription by directly interacting with RNA polymerase or recruiting other protein factors that may regulate transcription. This review summarizes the up to date knowledge on the involvement of three human RecQ family proteins BLM, WRN and RECQL5 in transcription regulation and management of transcription associated stress.


1991 ◽  
Vol 11 (2) ◽  
pp. 1069-1079
Author(s):  
D Giesman ◽  
L Best ◽  
K Tatchell

The RAP1 gene of Saccharomyces cerevisiae encodes an abundant DNA-binding protein, also known as GRF1, TBA, or TUF, that binds to many sites in the yeast genome in vitro. These sites define a consensus sequence, [sequence: see text], and deletion analyses of genes that contain this sequence have implicated the involvement of RAP1 in numerous cellular processes, including gene activation and repression. The MAT alpha locus, required for determination of the alpha cell type in yeast cells, contains a RAP1 binding site; this site coincides with the MAT alpha upstream activating sequence (UAS) and is necessary for expression of the two genes encoded by the MAT alpha locus, MAT alpha 1 and MAT alpha 2. We show that the MAT alpha UAS is sufficient to activate transcription from a promoterless gene fusion of the yeast CYC1 upstream region and the lacZ gene. Constructs containing only the MAT alpha UAS generated elevated levels of beta-galactosidase activity which were indistinguishable from those of constructs containing the entire MAT alpha intergenic region. Further, the MAT alpha UAS has an intrinsic polarity of transcriptional activation; transcription of CYC1-lacZ was six- to sevenfold higher when the UAS was oriented in the direction normally associated with MAT alpha 2 transcription. Point mutations in the MAT alpha UAS that reduce MAT alpha expression three- to fivefold resulted in a bi-mating phenotype, while a mutation that reduced MAT alpha expression still further resulted in an a-mating phenotype. We isolated plasmids from a high-copy-number yeast library that suppressed the bi-mating defect of point mutations in the MAT alpha UAS, and the most effective dosage suppressor contained the gene encoding RAP1. A temperature-sensitive rap1 mutant bi-mates at the semipermissive temperature. Double mutants at rap1 and mat alpha mate exclusively as a cells, at all temperatures, and do not express detectable levels of MAT alpha RNA. These data provide evidence that the RAP1 gene product functions at the MAT alpha UAS in vivo.


2020 ◽  
Author(s):  
X. Chen ◽  
Y. Ali ◽  
C.E.L. Fisher ◽  
R. Arribas-Bosacoma ◽  
M.B. Rajasekaran ◽  
...  

ABSTRACTBLM (Bloom syndrome protein) is a RECQ-family helicase involved in the dissolution of complex DNA structures and repair intermediates. Synthetic lethality analysis implicates BLM as a promising target in a range of cancers with defects in the DNA damage response, however selective small molecule inhibitors of defined mechanism are currently lacking. Here we identify and characterise a specific inhibitor of BLM’s ATPase-coupled DNA helicase activity, by allosteric trapping of a DNA-bound translocation intermediate. Crystallographic structures of BLM-DNA-ADP-inhibitor complexes identify a hitherto unknown interdomain interface, whose opening and closing are integral to translocation of ssDNA, and which provides a highly selective pocket for drug discovery. Comparison with structures of other RECQ helicases provides a model for branch migration of Holliday junctions by BLM.


Sign in / Sign up

Export Citation Format

Share Document