Understanding the roles of RecQ helicases in the maintenance of genome integrity and suppression of tumorigenesis

2004 ◽  
Vol 32 (6) ◽  
pp. 957-958 ◽  
Author(s):  
H.W. Mankouri ◽  
I.D. Hickson

RecQ helicases are evolutionarily conserved enzymes required for the maintenance of genome stability. Mutations in three of the five known human RecQ helicase genes cause distinct clinical disorders that are characterized by genome instability and cancer predisposition. Recent studies have begun to reveal the cellular roles of RecQ helicases and how these enzymes may prevent tumorigenesis at the molecular level.

Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 205 ◽  
Author(s):  
Sonia Vidushi Gupta ◽  
Kristina Hildegard Schmidt

With roles in DNA repair, recombination, replication and transcription, members of the RecQ DNA helicase family maintain genome integrity from bacteria to mammals. Mutations in human RecQ helicases BLM, WRN and RecQL4 cause incurable disorders characterized by genome instability, increased cancer predisposition and premature adult-onset aging. Yeast cells lacking the RecQ helicase Sgs1 share many of the cellular defects of human cells lacking BLM, including hypersensitivity to DNA damaging agents and replication stress, shortened lifespan, genome instability and mitotic hyper-recombination, making them invaluable model systems for elucidating eukaryotic RecQ helicase function. Yeast and human RecQ helicases have common DNA substrates and domain structures and share similar physical interaction partners. Here, we review the major cellular functions of the yeast RecQ helicases Sgs1 of Saccharomyces cerevisiae and Rqh1 of Schizosaccharomyces pombe and provide an outlook on some of the outstanding questions in the field.


2018 ◽  
Author(s):  
Annie S. Tam ◽  
Veena Mathew ◽  
Tianna S. Sihota ◽  
Anni Zhang ◽  
Peter C. Stirling

To achieve genome stability cells must coordinate the action of various DNA transactions including DNA replication, repair, transcription and chromosome segregation. How transcription and RNA processing enable genome stability is only partly understood. Two predominant models have emerged: one involving changes in gene expression that perturb other genome maintenance factors, and another in which genotoxic DNA:RNA hybrids, called R-loops, impair DNA replication. Here we characterize genome instability phenotypes in a panel yeast splicing factor mutants and find that mitotic defects, and in some cases R-loop accumulation, are causes of genome instability. Genome instability in splicing mutants is exacerbated by loss of the spindle-assembly checkpoint protein Mad1. Moreover, removal of the intron from the α-tubulin gene TUB1 restores genome integrity. Thus, while R-loops contribute in some settings, defects in yeast splicing predominantly lead to genome instability through effects on gene expression.


2020 ◽  
Author(s):  
Calvin Shun Yu Lo ◽  
Marvin van Toorn ◽  
Vincent Gaggioli ◽  
Mariana Paes Dias ◽  
Yifan Zhu ◽  
...  

ABSTRACTStalled fork protection pathway mediated by BRCA1/2 proteins is critical for replication fork stability that has implications in tumorigenesis. However, it is unclear if additional mechanisms are required to maintain replication fork stability. We describe a novel mechanism by which the chromatin remodeler SMARCAD1 stabilizes active replication forks that is essential for resistance towards replication poisons. We find that loss of SMARCAD1 results in toxic enrichment of 53BP1 at replication forks which mediates untimely dissociation of PCNA via the PCNA-unloader, ATAD5. Faster dissociation of PCNA causes frequent fork stalling, inefficient fork restart and accumulation of single-stranded DNA resulting in genome instability. Although, loss of 53BP1 in SMARCAD1 mutants restore PCNA levels, fork restart efficiency, genome stability and tolerance to replication poisons; this requires BRCA1 mediated fork protection. Interestingly, fork protection challenged BRCA1-deficient naïve- or PARPi-resistant tumors require SMARCAD1 mediated active fork stabilization to maintain unperturbed fork progression and cellular proliferation.


2004 ◽  
Vol 24 (3) ◽  
pp. 1279-1291 ◽  
Author(s):  
Sally L. Davies ◽  
Phillip S. North ◽  
Alwyn Dart ◽  
Nicholas D. Lakin ◽  
Ian D. Hickson

ABSTRACT Bloom's syndrome (BS) is a human genetic disorder associated with cancer predisposition. The BS gene product, BLM, is a member of the RecQ helicase family, which is required for the maintenance of genome stability in all organisms. In budding and fission yeasts, loss of RecQ helicase function confers sensitivity to inhibitors of DNA replication, such as hydroxyurea (HU), by failure to execute normal cell cycle progression following recovery from such an S-phase arrest. We have examined the role of the human BLM protein in recovery from S-phase arrest mediated by HU and have probed whether the stress-activated ATR kinase, which functions in checkpoint signaling during S-phase arrest, plays a role in the regulation of BLM function. We show that, consistent with a role for BLM in protection of human cells against the toxicity associated with arrest of DNA replication, BS cells are hypersensitive to HU. BLM physically associates with ATR (ataxia telangiectasia and rad3+ related) protein and is phosphorylated on two residues in the N-terminal domain, Thr-99 and Thr-122, by this kinase. Moreover, BS cells ectopically expressing a BLM protein containing phosphorylation-resistant T99A/T122A substitutions fail to adequately recover from an HU-induced replication blockade, and the cells subsequently arrest at a caffeine-sensitive G2/M checkpoint. These abnormalities are not associated with a failure of the BLM-T99A/T122A protein to localize to replication foci or to colocalize either with ATR itself or with other proteins that are required for response to DNA damage, such as phosphorylated histone H2AX and RAD51. Our data indicate that RecQ helicases play a conserved role in recovery from perturbations in DNA replication and are consistent with a model in which RecQ helicases act to restore productive DNA replication following S-phase arrest and hence prevent subsequent genomic instability.


2016 ◽  
Vol 6 (12) ◽  
pp. 3913-3925 ◽  
Author(s):  
T Brooke McClendon ◽  
Rana Mainpal ◽  
Francis R G Amrit ◽  
Michael W Krause ◽  
Arjumand Ghazi ◽  
...  

Abstract The germ line efficiently combats numerous genotoxic insults to ensure the high fidelity propagation of unaltered genomic information across generations. Yet, germ cells in most metazoans also intentionally create double-strand breaks (DSBs) to promote DNA exchange between parental chromosomes, a process known as crossing over. Homologous recombination is employed in the repair of both genotoxic lesions and programmed DSBs, and many of the core DNA repair proteins function in both processes. In addition, DNA repair efficiency and crossover (CO) distribution are both influenced by local and global differences in chromatin structure, yet the interplay between chromatin structure, genome integrity, and meiotic fidelity is still poorly understood. We have used the xnd-1 mutant of Caenorhabditis elegans to explore the relationship between genome integrity and crossover formation. Known for its role in ensuring X chromosome CO formation and germ line development, we show that xnd-1 also regulates genome stability. xnd-1 mutants exhibited a mortal germ line, high embryonic lethality, high incidence of males, and sensitivity to ionizing radiation. We discovered that a hypomorphic allele of mys-1 suppressed these genome instability phenotypes of xnd-1, but did not suppress the CO defects, suggesting it serves as a separation-of-function allele. mys-1 encodes a histone acetyltransferase, whose homolog Tip60 acetylates H2AK5, a histone mark associated with transcriptional activation that is increased in xnd-1 mutant germ lines, raising the possibility that thresholds of H2AK5ac may differentially influence distinct germ line repair events. We also show that xnd-1 regulated him-5 transcriptionally, independently of mys-1, and that ectopic expression of him-5 suppressed the CO defects of xnd-1. Our work provides xnd-1 as a model in which to study the link between chromatin factors, gene expression, and genome stability.


Genetics ◽  
1998 ◽  
Vol 148 (3) ◽  
pp. 1043-1054 ◽  
Author(s):  
Patricia Sánchez-Alonso ◽  
Plinio Guzmán

Abstract In this study we have established the structure of chromosome ends in the basidiomycete fungus Ustilago maydis. We isolated and characterized several clones containing telomeric regions and found that as in other organisms, they consist of middle repeated DNA sequences. Two principal types of sequence were found: UTASa was highly conserved in nucleotide sequence and located almost exclusively at the chromosome ends, and UTASb was less conserved in nucleotide sequence than UTASa and found not just at the ends but highly interspersed throughout the genome. Sequence analysis revealed that UTASa encodes an open reading frame containing helicase motifs with the strongest homology to RecQ helicases; these are DNA helicases whose function involves the maintenance of genome stability in Saccharomyces cerevisiae and in humans, and the suppression of illegitimate recombination in Escherichia coli. Both UTASa and UTASb contain a common region of about 300 bp located immediately adjacent to the telomere repeats that are also found interspersed in the genome. The analysis of the chromosome ends of U. maydis provides information on the general structure of chromosome ends in eukaryotes, and the putative RecQ helicase at UTASa may reveal a novel mechanism for the maintenance of chromosome stability.


2019 ◽  
Author(s):  
Bénédicte Desvoyes ◽  
Sandra Noir ◽  
Kinda Masoud ◽  
María Isabel López ◽  
Pascal Genschik ◽  
...  

AbstractMaintenance of genome integrity depends on controlling the availability of DNA replication initiation proteins, e.g., CDT1, a component of the pre-replication complexes that regulates chromatin licensing for replication. To understand the evolutionary history of CDT1 regulation, we have identified the mechanisms involved in CDT1 dynamics. During cell cycle, CDT1a starts to be loaded early after mitotic exit and maintains high levels until the G1/S transition. Soon after the S-phase onset, CDT1a is rapidly degraded in a proteasome-dependent manner. Plant cells use a specific SCF-mediated pathway that relies on the FBL17 F-box protein for CDT1a degradation, which is independent of CUL4a-containing complexes. A similar oscillatory pattern occurs in endoreplicating cells, where CDT1a is loaded just after finishing the S-phase. CDT1a is necessary to maintain genome stability, an ancient strategy although unique proteins and mechanisms have evolved in different eukaryotic lineages to ensure its degradation during S-phase.Impact statementThe DNA replication protein CDT1a is crucial for genome integrity and is targeted for proteasome degradation just after S-phase initiation by FBL17 in proliferating and endoreplicating cells of Arabidopsis


2021 ◽  
Vol 22 (7) ◽  
pp. 3485
Author(s):  
Marta Osrodek ◽  
Michal Wozniak

Despite recent groundbreaking advances in the treatment of cutaneous melanoma, it remains one of the most treatment-resistant malignancies. Due to resistance to conventional chemotherapy, the therapeutic focus has shifted away from aiming at melanoma genome stability in favor of molecularly targeted therapies. Inhibitors of the RAS/RAF/MEK/ERK (MAPK) pathway significantly slow disease progression. However, long-term clinical benefit is rare due to rapid development of drug resistance. In contrast, immune checkpoint inhibitors provide exceptionally durable responses, but only in a limited number of patients. It has been increasingly recognized that melanoma cells rely on efficient DNA repair for survival upon drug treatment, and that genome instability increases the efficacy of both MAPK inhibitors and immunotherapy. In this review, we discuss recent developments in the field of melanoma research which indicate that targeting genome stability of melanoma cells may serve as a powerful strategy to maximize the efficacy of currently available therapeutics.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dylan G. Chitwood ◽  
Qinghua Wang ◽  
Kathryn Elliott ◽  
Aiyana Bullock ◽  
Dwon Jordana ◽  
...  

Abstract Background As bioprocess intensification has increased over the last 30 years, yields from mammalian cell processes have increased from 10’s of milligrams to over 10’s of grams per liter. Most of these gains in productivity can be attributed to increasing cell densities within bioreactors. As such, strategies have been developed to minimize accumulation of metabolic wastes, such as lactate and ammonia. Unfortunately, neither cell growth nor biopharmaceutical production can occur without some waste metabolite accumulation. Inevitably, metabolic waste accumulation leads to decline and termination of the culture. While it is understood that the accumulation of these unwanted compounds imparts a suboptimal culture environment, little is known about the genotoxic properties of these compounds that may lead to global genome instability. In this study, we examined the effects of high and moderate extracellular ammonia on the physiology and genomic integrity of Chinese hamster ovary (CHO) cells. Results Through whole genome sequencing, we discovered 2394 variant sites within functional genes comprised of both single nucleotide polymorphisms and insertion/deletion mutations as a result of ammonia stress with high or moderate impact on functional genes. Furthermore, several of these de novo mutations were found in genes whose functions are to maintain genome stability, such as Tp53, Tnfsf11, Brca1, as well as Nfkb1. Furthermore, we characterized microsatellite content of the cultures using the CriGri-PICR Chinese hamster genome assembly and discovered an abundance of microsatellite loci that are not replicated faithfully in the ammonia-stressed cultures. Unfaithful replication of these loci is a signature of microsatellite instability. With rigorous filtering, we found 124 candidate microsatellite loci that may be suitable for further investigation to determine whether these loci may be reliable biomarkers to predict genome instability in CHO cultures. Conclusion This study advances our knowledge with regards to the effects of ammonia accumulation on CHO cell culture performance by identifying ammonia-sensitive genes linked to genome stability and lays the foundation for the development of a new diagnostic tool for assessing genome stability.


Sign in / Sign up

Export Citation Format

Share Document