scholarly journals Evolution of Multicellularity

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1532
Author(s):  
J. Mark Cock

The emergence of multicellular organisms was, perhaps, the most spectacular of the major transitions during the evolutionary history of life on this planet [...]

Author(s):  
John Maynard Smith ◽  
Eors Szathmary

Over the history of life there have been several major changes in the way genetic information is organized and transmitted from one generation to the next. These transitions include the origin of life itself, the first eukaryotic cells, reproduction by sexual means, the appearance of multicellular plants and animals, the emergence of cooperation and of animal societies, and the unique language ability of humans. This ambitious book provides the first unified discussion of the full range of these transitions. The authors highlight the similarities between different transitions--between the union of replicating molecules to form chromosomes and of cells to form multicellular organisms, for example--and show how understanding one transition sheds light on others. They trace a common theme throughout the history of evolution: after a major transition some entities lose the ability to replicate independently, becoming able to reproduce only as part of a larger whole. The authors investigate this pattern and why selection between entities at a lower level does not disrupt selection at more complex levels. Their explanation encompasses a compelling theory of the evolution of cooperation at all levels of complexity. Engagingly written and filled with numerous illustrations, this book can be read with enjoyment by anyone with an undergraduate training in biology. It is ideal for advanced discussion groups on evolution and includes accessible discussions of a wide range of topics, from molecular biology and linguistics to insect societies.


Author(s):  
Nicholas J. Strausfeld

Occasionally, fossils recovered from lower and middle Cambrian sedimentary rocks contain the remains of nervous system. These residues reveal the symmetric arrangements of brain and ganglia that correspond to the ground patterns of brain and ventral ganglia of four major panarthropod clades existing today: Onychophora, Chelicerata, Myriapoda, and Pancrustacea. Comparative neuroanatomy of living species and studies of fossils suggest that highly conserved neuronal arrangements have been retained in these four lineages for more than a half billion years, despite some major transitions of neuronal architectures. This chapter will review recent explorations into the evolutionary history of the arthropod brain, concentrating on the subphylum Pancrustacea, which comprises hexapods and crustaceans, and on the subphylum Chelicerata, which includes horseshoe crabs, scorpions, and spiders. Studies of Pancrustacea illustrate some of the challenges in ascribing homology to centers that appear to have corresponding organization, whereas Chelicerata offers clear examples of both divergent cerebral evolution and convergence.


2021 ◽  
Author(s):  
Dinah R. Davison ◽  
Claes Andersson ◽  
Richard E. Michod ◽  
Steven L. Kuhn

AbstractEvolutionary Transitions in Individuality (ETI) have been responsible for the major transitions in levels of selection and individuality in natural history, such as the origins of prokaryotic and eukaryotic cells, multicellular organisms, and eusocial insects. The integrated hierarchical organization of life thereby emerged as groups of individuals repeatedly evolved into new and more complex kinds of individuals. The Social Protocell Hypothesis (SPH) proposes that the integrated hierarchical organization of human culture can also be understood as the outcome of an ETI—one that produced a “cultural organism” (a “sociont”) from a substrate of socially learned traditions that were contained in growing and dividing social communities. The SPH predicts that a threshold degree of evolutionary individuality would have been achieved by 2.0–2.5 Mya, followed by an increasing degree of evolutionary individuality as the ETI unfolded. We here assess the SPH by applying a battery of criteria—developed to assess evolutionary individuality in biological units—to cultural units across the evolutionary history of Homo. We find an increasing agreement with these criteria, which buttresses the claim that an ETI occurred in the cultural realm.


Biology Open ◽  
2021 ◽  
Author(s):  
Emily A. Schiller ◽  
Dan T. Bergstralh

The orientation of the mitotic spindle determines the direction of cell division, and therefore contributes to tissue shape and cell fate. Interaction between the multifunctional scaffolding protein Discs large (Dlg) and the canonical spindle orienting factor GPSM2 (called Pins in Drosophila and LGN in vertebrates) has been established in bilaterian models, but its function remains unclear. We used a phylogenetic approach to test whether the interaction is obligate in animals, and in particular whether Pins/LGN/GPSM2 evolved in multicellular organisms as a Dlg-binding protein. We show that Dlg diverged in C. elegans and the syncytial sponge O. minuta and propose that this divergence may correspond to differences in spindle orientation requirements between these organisms and the canonical pathways described in bilaterians. We also demonstrate that Pins/LGN/GPSM2 is present in basal animals, but the established Dlg-interaction site cannot be found in either Placozoa or Porifera. Our results suggest that the interaction between Pins/LGN/GPSM2 and Dlg appeared in Cnidaria, and we therefore speculate that it may have evolved to promote accurate division orientation in the nervous system. This work reveals the evolutionary history of the Pins/LGN/GPSM2-Dlg interaction and suggests new possibilities for its importance in spindle orientation during epithelial and neural tissue development.


2016 ◽  
Vol 371 (1698) ◽  
pp. 20150245 ◽  
Author(s):  
Ignacio de la Torre

The emergence of the Acheulean from the earlier Oldowan constitutes a major transition in human evolution, the theme of this special issue. This paper discusses the evidence for the origins of the Acheulean, a cornerstone in the history of human technology, from two perspectives; firstly, a review of the history of investigations on Acheulean research is presented. This approach introduces the evolution of theories throughout the development of the discipline, and reviews the way in which cumulative knowledge led to the prevalent explanatory framework for the emergence of the Acheulean. The second part presents the current state of the art in Acheulean origins research, and reviews the hard evidence for the appearance of this technology in Africa around 1.7 Ma, and its significance for the evolutionary history of Homo erectus . This article is part of the themed issue ‘Major transitions in human evolution’.


Paleobiology ◽  
2007 ◽  
Vol 33 (2) ◽  
pp. 182-200 ◽  
Author(s):  
Jonathan D. Marcot ◽  
Daniel W. McShea

The history of life is punctuated by a number of major transitions in hierarchy, defined here as the degree of nestedness of lower-level individuals within higher-level ones: the combination of single-celled prokaryotic cells to form the first eukaryotic cell, the aggregation of single eukaryotic cells to form complex multicellular organisms, and finally, the association of multicellular organisms to form complex colonial individuals. These transitions together constitute one of the most salient and certain trends in the history of life, in particular, a trend in maximum hierarchical structure, which can be understood as a trend in complexity. This trend could be produced by a biased mechanism, in which increases in hierarchy are more likely than decreases, or by an unbiased one, in which increases and decreases are about equally likely. At stake is whether or not natural selection or some other force acts powerfully over the history of life to drive complexity upward.Too few major transitions are known to permit rigorous statistical discrimination of trend mechanisms based on these transitions alone. However, the mechanism can be investigated by using “minor transitions” in hierarchy, or, in other words, changes in the degree of individuation of the upper level. This study tests the null hypothesis that the probability (or rate) of increase and decrease in individuation are equal in a phylogenetic context. We found published phylogenetic trees for clades spanning minor transitions across the tree of life and identified changes in character states associated with those minor transitions. We then used both parsimony- and maximum-likelihood-based methods to test for asymmetrical rates of character evolution. Most analyses failed to reject equal rates of hierarchical increase and decrease. In fact, a bias toward decreasing complexity was observed for several clades. These results suggest that no strong tendency exists for hierarchical complexity to increase.


2021 ◽  
Author(s):  
Emily Schiller ◽  
Dan T Bergstralh

The orientation of the mitotic spindle determines the direction of cell division, and therefore contributes to tissue shape and cell fate. Interaction between the multifunctional scaffolding protein Discs large (Dlg) and the canonical spindle orienting factor GPSM2 (also called Pins in Drosophila and LGN in vertebrates) has been established in bilaterian models, but its function remains unclear. We used a phylogenetic approach to test whether the interaction is obligate in animals, and in particular whether GPSM2 evolved in multicellular organisms as a Dlg-binding protein. We show that Dlg diverged in C. elegans and the syncytial sponge O. minuta and propose that this divergence may correspond to differences in spindle orientation requirements between these organisms and the canonical pathways described in bilaterians. We also demonstrate that GPSM2 is present in basal animals, but the established Dlg-interaction site cannot be found in either Placozoa or Porifera. Our results suggest that the interaction between GPSM2 and Dlg appeared in Cnidaria, and we therefore speculate that it may have evolved to promote accurate division orientation in the nervous system. This work reveals the evolutionary history of the GPSM2/Dlg interaction and suggests new possibilities for its importance in spindle orientation during epithelial and neural tissue development.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


Sign in / Sign up

Export Citation Format

Share Document