scholarly journals Improved SNV Discovery in Barcode-Stratified scRNA-seq Alignments

Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1558
Author(s):  
Prashant N. M. ◽  
Hongyu Liu ◽  
Christian Dillard ◽  
Helen Ibeawuchi ◽  
Turkey Alsaeedy ◽  
...  

Currently, the detection of single nucleotide variants (SNVs) from 10 x Genomics single-cell RNA sequencing data (scRNA-seq) is typically performed on the pooled sequencing reads across all cells in a sample. Here, we assess the gaining of information regarding SNV assessments from individual cell scRNA-seq data, wherein the alignments are split by cellular barcode prior to the variant call. We also reanalyze publicly available data on the MCF7 cell line during anticancer treatment. We assessed SNV calls by three variant callers—GATK, Strelka2, and Mutect2, in combination with a method for the cell-level tabulation of the sequencing read counts bearing variant alleles–SCReadCounts (single-cell read counts). Our analysis shows that variant calls on individual cell alignments identify at least a two-fold higher number of SNVs as compared to the pooled scRNA-seq; these SNVs are enriched in novel variants and in stop-codon and missense substitutions. Our study indicates an immense potential of SNV calls from individual cell scRNA-seq data and emphasizes the need for cell-level variant detection approaches and tools, which can contribute to the understanding of the cellular heterogeneity and the relationships to phenotypes, and help elucidate somatic mutation evolution and functionality.

2021 ◽  
Author(s):  
NM Prashant ◽  
Hongyu Liu ◽  
Christian Dillard ◽  
Helen Ibeawuchi ◽  
Turkey Alsaeedy ◽  
...  

Single cell SNV analysis is an emerging and promising strategy to connect cell-level genetic variation to cell phenotypes. At the present, SNV detection from 10x Genomics scRNA-seq data is typically performed on the pooled sequencing reads across all cells in a sample. Here, we assess the gain of information of SNV assessments from individual cell scRNA-seq data, where the alignments are split by barcode prior to the variant call. For our analyses we use publicly available sequencing da-ta on the human breast cancer cell line MCF7 cell line generated at consequent time-points during anticancer treatment. We analysed SNV calls by three popular variant callers, GATK, Strelka2 and Mutect2, in combination with a method for cell-level tabulation of the sequencing read counts bearing SNV alleles, SCReadCounts. Our analysis shows that variant calls on individual cell alignments identify at least two-fold higher number of SNVs as compared to the pooled scRNA-seq. We demonstrate that scSNVs exclusively called in the single cell alignments (scSNVs) are substantially enriched in novel genetic variants and in coding functional annotations, in particular, stop-codon and missense substitutions. Furthermore, we find that the expression of some scSNVs correlates with the expression of their harbouring gene (cis-scReQTLs). Overall, our study indicates an immense potential of SNV calls from individual cell scRNA-seq data and emphasizes on the need of cell-level variant detection approaches and tools. Given the growing accumulation of scRNA-seq datasets, cell-level variant assessments are likely to significantly contribute to the understanding of the cellular heterogeneity and the relationship between genetics variants and functional phenotypes. In addition, cell-level variant assessments from scRNA-seq can be highly informative in cancer where they can help elucidate somatic mutations evolution and functionality.


2017 ◽  
Author(s):  
Craig L. Bohrson ◽  
Allison R. Barton ◽  
Michael A. Lodato ◽  
Rachel E. Rodin ◽  
Vinay Viswanadham ◽  
...  

AbstractWhole-genome sequencing of DNA from single cells has the potential to reshape our understanding of the mutational heterogeneity in normal and disease tissues. A major difficulty, however, is distinguishing artifactual mutations that arise from DNA isolation and amplification from true mutations. Here, we describe linked-read analysis (LiRA), a method that utilizes phasing of somatic single nucleotide variants with nearby germline variants to identify true mutations, thereby allowing accurate estimation of somatic mutation rates at the single cell level.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Fenglin Liu ◽  
Yuanyuan Zhang ◽  
Lei Zhang ◽  
Ziyi Li ◽  
Qiao Fang ◽  
...  

Abstract Background Systematic interrogation of single-nucleotide variants (SNVs) is one of the most promising approaches to delineate the cellular heterogeneity and phylogenetic relationships at the single-cell level. While SNV detection from abundant single-cell RNA sequencing (scRNA-seq) data is applicable and cost-effective in identifying expressed variants, inferring sub-clones, and deciphering genotype-phenotype linkages, there is a lack of computational methods specifically developed for SNV calling in scRNA-seq. Although variant callers for bulk RNA-seq have been sporadically used in scRNA-seq, the performances of different tools have not been assessed. Results Here, we perform a systematic comparison of seven tools including SAMtools, the GATK pipeline, CTAT, FreeBayes, MuTect2, Strelka2, and VarScan2, using both simulation and scRNA-seq datasets, and identify multiple elements influencing their performance. While the specificities are generally high, with sensitivities exceeding 90% for most tools when calling homozygous SNVs in high-confident coding regions with sufficient read depths, such sensitivities dramatically decrease when calling SNVs with low read depths, low variant allele frequencies, or in specific genomic contexts. SAMtools shows the highest sensitivity in most cases especially with low supporting reads, despite the relatively low specificity in introns or high-identity regions. Strelka2 shows consistently good performance when sufficient supporting reads are provided, while FreeBayes shows good performance in the cases of high variant allele frequencies. Conclusions We recommend SAMtools, Strelka2, FreeBayes, or CTAT, depending on the specific conditions of usage. Our study provides the first benchmarking to evaluate the performances of different SNV detection tools for scRNA-seq data.


Author(s):  
Zilong Zhang ◽  
Feifei Cui ◽  
Chen Lin ◽  
Lingling Zhao ◽  
Chunyu Wang ◽  
...  

Abstract Single-cell RNA sequencing (scRNA-seq) has enabled us to study biological questions at the single-cell level. Currently, many analysis tools are available to better utilize these relatively noisy data. In this review, we summarize the most widely used methods for critical downstream analysis steps (i.e. clustering, trajectory inference, cell-type annotation and integrating datasets). The advantages and limitations are comprehensively discussed, and we provide suggestions for choosing proper methods in different situations. We hope this paper will be useful for scRNA-seq data analysts and bioinformatics tool developers.


Author(s):  
David Porubsky ◽  
◽  
Peter Ebert ◽  
Peter A. Audano ◽  
Mitchell R. Vollger ◽  
...  

AbstractHuman genomes are typically assembled as consensus sequences that lack information on parental haplotypes. Here we describe a reference-free workflow for diploid de novo genome assembly that combines the chromosome-wide phasing and scaffolding capabilities of single-cell strand sequencing1,2 with continuous long-read or high-fidelity3 sequencing data. Employing this strategy, we produced a completely phased de novo genome assembly for each haplotype of an individual of Puerto Rican descent (HG00733) in the absence of parental data. The assemblies are accurate (quality value > 40) and highly contiguous (contig N50 > 23 Mbp) with low switch error rates (0.17%), providing fully phased single-nucleotide variants, indels and structural variants. A comparison of Oxford Nanopore Technologies and Pacific Biosciences phased assemblies identified 154 regions that are preferential sites of contig breaks, irrespective of sequencing technology or phasing algorithms.


Author(s):  
Congting Ye ◽  
Qian Zhou ◽  
Xiaohui Wu ◽  
Chen Yu ◽  
Guoli Ji ◽  
...  

Abstract Motivation Alternative polyadenylation (APA) plays a key post-transcriptional regulatory role in mRNA stability and functions in eukaryotes. Single cell RNA-seq (scRNA-seq) is a powerful tool to discover cellular heterogeneity at gene expression level. Given 3′ enriched strategy in library construction, the most commonly used scRNA-seq protocol—10× Genomics enables us to improve the study resolution of APA to the single cell level. However, currently there is no computational tool available for investigating APA profiles from scRNA-seq data. Results Here, we present a package scDAPA for detecting and visualizing dynamic APA from scRNA-seq data. Taking bam/sam files and cell cluster labels as inputs, scDAPA detects APA dynamics using a histogram-based method and the Wilcoxon rank-sum test, and visualizes candidate genes with dynamic APA. Benchmarking results demonstrated that scDAPA can effectively identify genes with dynamic APA among different cell groups from scRNA-seq data. Availability and implementation The scDAPA package is implemented in Shell and R, and is freely available at https://scdapa.sourceforge.io. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


GigaScience ◽  
2019 ◽  
Vol 8 (9) ◽  
Author(s):  
Luca Alessandrì ◽  
Francesca Cordero ◽  
Marco Beccuti ◽  
Maddalena Arigoni ◽  
Martina Olivero ◽  
...  

Abstract Background Single-cell RNA sequencing is essential for investigating cellular heterogeneity and highlighting cell subpopulation-specific signatures. Single-cell sequencing applications have spread from conventional RNA sequencing to epigenomics, e.g., ATAC-seq. Many related algorithms and tools have been developed, but few computational workflows provide analysis flexibility while also achieving functional (i.e., information about the data and the tools used are saved as metadata) and computational reproducibility (i.e., a real image of the computational environment used to generate the data is stored) through a user-friendly environment. Findings rCASC is a modular workflow providing an integrated analysis environment (from count generation to cell subpopulation identification) exploiting Docker containerization to achieve both functional and computational reproducibility in data analysis. Hence, rCASC provides preprocessing tools to remove low-quality cells and/or specific bias, e.g., cell cycle. Subpopulation discovery can instead be achieved using different clustering techniques based on different distance metrics. Cluster quality is then estimated through the new metric "cell stability score" (CSS), which describes the stability of a cell in a cluster as a consequence of a perturbation induced by removing a random set of cells from the cell population. CSS provides better cluster robustness information than the silhouette metric. Moreover, rCASC's tools can identify cluster-specific gene signatures. Conclusions rCASC is a modular workflow with new features that could help researchers define cell subpopulations and detect subpopulation-specific markers. It uses Docker for ease of installation and to achieve a computation-reproducible analysis. A Java GUI is provided to welcome users without computational skills in R.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 335-342 ◽  
Author(s):  
Dan Sun ◽  
Fanghao Cao ◽  
Lili Cong ◽  
Weiqing Xu ◽  
Qidan Chen ◽  
...  

We proposed an ultrasensitive method for studying low abundance ALP secreted by individual cell using the microfluidic droplet-based SERRS technique.


2020 ◽  
Author(s):  
Jixing Zhong ◽  
Gen Tang ◽  
Jiacheng Zhu ◽  
Xin Qiu ◽  
Weiying Wu ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disease leading to the impairment of execution of movement. PD pathogenesis has been largely investigated, but either restricted in bulk level or at certain cell types, which failed to capture cellular heterogeneity and intrinsic interplays among distinct cell types. To overcome this, we applied single-nucleus RNA-seq and single cell ATAC-seq on cerebellum, midbrain and striatum of PD mouse and matched control. With 74,493 cells in total, we comprehensively depicted the dysfunctions under PD pathology covering proteostasis, neuroinflammation, calcium homeostasis and extracellular neurotransmitter homeostasis. Besides, by multi-omics approach, we identified putative biomarkers for early stage of PD, based on the relationships between transcriptomic and epigenetic profiles. We located certain cell types that primarily contribute to PD early pathology, narrowing the gap between genotypes and phenotypes. Taken together, our study provides a valuable resource to dissect the molecular mechanism of PD pathogenesis at single cell level, which could facilitate the development of novel methods regarding diagnosis, monitoring and practical therapies against PD at early stage.


Rheumatology ◽  
2021 ◽  
Author(s):  
Barbora Schonfeldova ◽  
Kristina Zec ◽  
Irina A Udalova

Abstract Despite extensive research, there is still no treatment that would lead to remission in all patients with rheumatoid arthritis as our understanding of the affected site, the synovium, is still incomplete. Recently, single-cell technologies helped to decipher the cellular heterogeneity of the synovium; however, certain synovial cell populations, such as endothelial cells or peripheral neurons, remain to be profiled on a single-cell level. Furthermore, associations between certain cellular states and inflammation were found; whether these cells cause the inflammation remains to be answered. Similarly, cellular zonation and interactions between individual effectors in the synovium are yet to be fully determined. A deeper understanding of cell signalling and interactions in the synovium is crucial for a better design of therapeutics with the goal of complete remission in all patients.


Sign in / Sign up

Export Citation Format

Share Document