scholarly journals Evolution of the Pyrethroids Target-Site Resistance Mechanisms in Senegal: Early Stage of the Vgsc-1014F and Vgsc-1014S Allelic Frequencies Shift

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1948
Author(s):  
Moussa Diallo ◽  
Majidah Hamid-Adiamoh ◽  
Ousmane Sy ◽  
Pape Cheikh Sarr ◽  
Jarra Manneh ◽  
...  

The evolution and spread of insecticide resistance mechanisms amongst malaria vectors across the sub-Saharan Africa threaten the effectiveness and sustainability of current insecticide-based vector control interventions. However, a successful insecticide resistance management plan relies strongly on evidence of historical and contemporary mechanisms circulating. This study aims to retrospectively determine the evolution and spread of pyrethroid resistance mechanisms among natural Anopheles gambiae s.l. populations in Senegal. Samples were randomly drawn from an existing mosquito sample, collected in 2013, 2017, and 2018 from 10 sentinel sites monitored by the Senegalese National Malaria Control Programme (NMCP). Molecular species of An. gambiae s.l. and the resistance mutations at the Voltage-gated Sodium Channel 1014 (Vgsc-1014) locus were characterised using PCR-based assays. The genetic diversity of the Vgsc gene was further analyzed by sequencing. The overall species composition revealed the predominance of Anopheles arabiensis (73.08%) followed by An. gambiae s.s. (14.48%), Anopheles coluzzii (10.94%) and Anopheles gambiae–coluzii hybrids (1.48%). Both Vgsc-1014F and Vgsc-1014S mutations were found in all studied populations with a spatial variation of allele frequencies from 3% to 90%; and 7% to 41%, respectively. The two mutations have been detected since 2013 across all the selected health districts, with Vgsc-L1014S frequency increasing over the years while Vgsc-1014F decreasing. At species level, the Vgsc-1014F and Vgsc-1014S alleles were more frequent amongst An. gambiae s.s. (70%) and An. arabiensis (20%). The Vgsc gene was found to be highly diversified with eight different haplotypes shared between Vgsc-1014F and Vgsc-1014S. The observed co-occurrence of Vgsc-1014F and Vgsc-1014S mutations suggest that pyrethroid resistance is becoming a widespread phenomenon amongst malaria vector populations, and the NMCP needs to address this issue to sustain the gain made in controlling malaria.

Author(s):  
Adandé A Medjigbodo ◽  
Luc S Djogbenou ◽  
Aubin A Koumba ◽  
Laurette Djossou ◽  
Athanase Badolo ◽  
...  

Abstract An effective control of malaria vectors requires an extensive knowledge of mechanisms underlying the resistance-phenotypes developed by these vectors against insecticides. We investigated Anopheles gambiae mosquitoes from Benin and Togo for their intensity of insecticide resistance and we discussed the involvement of genotyped mechanisms in the resistance-phenotypes observed. Three- to five-day-old adult mosquitoes emerged from field and laboratory An. gambiae larvae were assayed using WHO tube intensity tests against various doses of deltamethrin: 1× (0.05%); 2× (0.1%); 5× (0.25%); 7.5× (0.375%) and those of pirimiphos-methyl: 0.5× (0.125%); 1× (0.25%). Members of An. gambiae complex were screened in field populations using polymerase chain reaction (PCR) assays. The presence of kdrR(1014F/1014S) and ace-1R(119S) mutations was also investigated using TaqMan and PCR-RFLP techniques, respectively. Anopheles gambiae from field were very resistant to deltamethrin, whereas KisKdr and AcerKdrKis strains displayed 100% mortality rates at 2× the diagnostic dose. In contrast, the field mosquitoes displayed a low resistance-intensity against 1× the diagnostic dose of pirimiphos-methyl, whereas AcerKis and AcerKdrKis strains showed susceptibility at 0.5× the diagnostic dose. Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis were identified. Allelic frequencies of kdrR (1014F) and ace-1R (119S) mutations in the field populations varied from 0.65 to 1 and 0 to 0.84, respectively. The field An. gambiae displayed high-resistance levels against deltamethrin and pirimiphos-methyl when compared with those of the laboratory An. gambiae-resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.


2018 ◽  
Author(s):  
Chris S. Clarkson ◽  
Alistair Miles ◽  
Nicholas J. Harding ◽  
David Weetman ◽  
Dominic Kwiatkowski ◽  
...  

AbstractResistance to pyrethroid insecticides is a major concern for malaria vector control, because these are the compounds used in almost all insecticide-treated bed-nets (ITNs), and are also widely used for indoor residual spraying (IRS). Pyrethroids target the voltage-gated sodium channel (VGSC), an essential component of the mosquito nervous system, but substitutions in the amino acid sequence can disrupt the activity of these insecticides, inducing a resistance phenotype. Here we use Illumina whole-genome sequence data from phase 1 of the Anopheles gambiae 1000 Genomes Project (Ag1000G) to provide a comprehensive account of genetic variation in the Vgsc gene in mosquito populations from eight African countries. In addition to the three known resistance alleles, we describe 20 non-synonymous nucleotide substitutions at appreciable frequency in one or more populations that are previously unknown in Anopheles mosquitoes. Thirteen of these novel alleles were found to occur almost exclusively on haplotypes carrying the known L995F resistance allele (L1014F in Musca domesticus codon numbering), and may enhance or compensate for the L995F resistance pheno-type. A novel mutation I1527T, which is adjacent to a predicted pyrethroid binding site, was found in tight linkage with either of two alleles causing a V402L substitution, similar to a combination of substitutions found to cause pyrethroid resistance in several other insect species. We analyse the genetic backgrounds on which non-synonymous alleles are found, to determine which alleles have experienced recent positive selection, and to refine our understanding of the spread of resistance between species and geographical locations. We describe twelve distinct haplotype groups with evidence of recent positive selection, five of which carry the known L995F resistance allele, five of which carry the known L995S resistance allele, one of which carries the novel I1527T allele, and one of which carries a novel M490I allele. Seven of these groups are localised to a single geographical location, and five comprise haplotypes from different countries, in one case separated by over 3000 km, providing new information about the geographical distribution and spread of resistance. We also find evidence for multiple introgression events transmitting resistance alleles between An. gambiae and An. coluzzii. We identify markers that could be used to design high-throughput, low-cost genetic assays for improved surveillance of pyrethroid resistance in the field. Our results demonstrate that the molecular basis of target-site pyrethroid resistance in malaria vectors is more complex than previously appreciated, and provide a foundation for the development of new genetic tools to track the spread insecticide resistance and improve the design of strategies for insecticide resistance management.


2018 ◽  
Author(s):  
Emma Collins ◽  
Natasha M. Vaselli ◽  
Moussa Sylla ◽  
Abdoul H. Beavogui ◽  
James Orsborne ◽  
...  

AbstractThe threat of insecticide resistance across sub-Saharan Africa is anticipated to severely impact the continued effectiveness of malaria vector control. We investigated the effect of carbamate and pyrethroid resistance on Anopheles gambiae s.l age, Plasmodium falciparum infection and characterized molecular resistance mechanisms in Guinea. Pyrethroid resistance was intense, with survivors of ten times the insecticidal concentration required to kill susceptible individuals. The L1014F kdr allele was significantly associated with mosquito survival following deltamethrin or permethrin treatment (p=0.003 and p=0.04, respectively). N1575Y and I1527T mutations were identified in 13% and 10% of individuals, respectively, but neither conferred increased pyrethroid tolerance. Partial restoration of pyrethroid susceptibility following synergist pre-exposure suggest a role for mixed-function oxidases. Carbamate resistance was lower and significantly associated with the G119S Ace-1 mutation (p=0.001). Oocyst rates were 6.8% and 4.2% among resistant and susceptible mosquitoes, respectively; survivors of bendiocarb exposure were significantly more likely to be infected (p=0.03). Resistant mosquitoes had significantly lower parity rates; however, a subset of intensely pyrethroid-resistant vectors were more likely to be parous (p=0.042 and p=0.045, for survivors of five and ten times the diagnostic dose of insecticides, respectively). Our findings emphasize the need for additional studies directly assessing the influence of insecticide resistance on mosquito fitness.


2017 ◽  
Vol 114 (52) ◽  
pp. E11267-E11275 ◽  
Author(s):  
Hmooda Toto Kafy ◽  
Bashir Adam Ismail ◽  
Abraham Peter Mnzava ◽  
Jonathan Lines ◽  
Mogahid Shiekh Eldin Abdin ◽  
...  

Insecticide-based interventions have contributed to ∼78% of the reduction in the malaria burden in sub-Saharan Africa since 2000. Insecticide resistance in malaria vectors could presage a catastrophic rebound in disease incidence and mortality. A major impediment to the implementation of insecticide resistance management strategies is that evidence of the impact of resistance on malaria disease burden is limited. A cluster randomized trial was conducted in Sudan with pyrethroid-resistant and carbamate-susceptible malaria vectors. Clusters were randomly allocated to receive either long-lasting insecticidal nets (LLINs) alone or LLINs in combination with indoor residual spraying (IRS) with a pyrethroid (deltamethrin) insecticide in the first year and a carbamate (bendiocarb) insecticide in the two subsequent years. Malaria incidence was monitored for 3 y through active case detection in cohorts of children aged 1 to <10 y. When deltamethrin was used for IRS, incidence rates in the LLIN + IRS arm and the LLIN-only arm were similar, with the IRS providing no additional protection [incidence rate ratio (IRR) = 1.0 (95% confidence interval [CI]: 0.36–3.0; P = 0.96)]. When bendiocarb was used for IRS, there was some evidence of additional protection [interaction IRR = 0.55 (95% CI: 0.40–0.76; P < 0.001)]. In conclusion, pyrethroid resistance may have had an impact on pyrethroid-based IRS. The study was not designed to assess whether resistance had an impact on LLINs. These data alone should not be used as the basis for any policy change in vector control interventions.


1995 ◽  
Vol 85 (2) ◽  
pp. 229-234 ◽  
Author(s):  
J. Hemingway ◽  
S.W. Lindsay ◽  
G.J. Small ◽  
M. Jawara ◽  
F.H. Collins

AbstractPyrethroid-impregnated bednets are being used nationwide in The Gambia. The future success of this malaria control programme depends partly on the vectors remaining susceptible to those insecticides used for treating the nets. The present study was carried out on the south bank of the river Gambia, during the first large scale trial of nets in this country. Thus this area represents a sentinel site for detecting insecticide resistance in local vectors. This study gives an example of how a system of early detection for resistance problems can be set up in a relatively complex situation where multiple vectors and non-vectors are present. Samples of the Anopheles gambiae complex were caught indoors using light traps in twelve villages used in the bednet study. In all villages A. gambiae sensu stricto Giles was the predominant member of the complex as determined using the rDNA-PCR diagnostic assay. Limited bioassays with DDT and permethrin, and biochemical assays for a range of insecticide resistance mechanisms suggest that the A. gambiae complex remains completely susceptible to all major classes of commonly used insecticides including pyrethroids. Biochemical assays suggest that a low frequency of DDT resistance may occur in A. melas Theobald. This is based on elevated glutathione S-transferase levels coupled with increased levels of DDT metabolism and does not involve cross-resistance to pyrethroids. Therefore we do not envisage a decline in the efficacy of treated nets against malaria vectors in the study area in the immediate future, although monitoring should be continued whilst wide-scale use of impregnated bednets is operational.


2019 ◽  
Author(s):  
Adriana Adolfi ◽  
Beth Poulton ◽  
Amalia Anthousi ◽  
Stephanie Macilwee ◽  
Hilary Ranson ◽  
...  

ABSTRACTResistance in Anopheles gambiae to members of all four major classes (pyrethroids, carbamates, organochlorines and organophosphates) of public health insecticides limits effective control of malaria transmission in Africa. Increased expression of detoxifying enzymes has been associated with resistance, but direct functional validation in An. gambiae has been lacking. Here we perform transgenic analysis using the GAL4/UAS system to examine insecticide resistance phenotypes conferred by increased expression of the three genes - Cyp6m2, Cyp6p3 and Gste2 - most often found upregulated in resistant An. gambiae. We report the first evidence in An. gambiae that organophosphate and organochlorine resistance is conferred by overexpression of GSTE2 in a broad tissue profile. Pyrethroid and carbamate resistance is bestowed by similar Cyp6p3 overexpression, and Cyp6m2 confers only pyrethroid resistance when overexpressed in the same tissues. Conversely, such Cyp6m2 overexpression increases susceptibility to the organophosphate malathion, presumably due to conversion to a more toxic metabolite. No resistant phenotypes are conferred when either Cyp6 gene overexpression is restricted to the midgut or oenocytes, answering long standing questions related to the importance of these tissues in resistance to contact insecticides. Validation of genes conferring resistance provides markers to guide control strategies, and the observed negative cross-resistance due to Cyp6m2 gives credence to proposed dual insecticide strategies to overcome pyrethroid resistance. These trasnsgenic An. gambiae resistant lines are being used to test potential liabilities in new active compounds early in development.SIGNIFICANCE STATEMENTInsecticide resistance in Anopheles gambiae mosquitoes can derail malaria control programs, and to overcome it we need to discover the underlying molecular basis. Here, for the first time, we characterise three genes most often associated with insecticide resistance directly by their overproduction in genetically modified An. gambiae. We show that overexpression of each gene confers resistance to representatives of at least one insecticide class and, taken together, the three genes provide cross-resistance to all four major insecticide classes currently used in public health. These data validate the candidate genes as markers to monitor the spread of resistance in mosquito populations. The modified mosquitoes produced are also valuable tools to pre-screen new insecticides for potential liabilities to existing resistance mechanisms.


2020 ◽  
Vol 5 ◽  
pp. 171
Author(s):  
Diane Leslie Nkahe ◽  
Edmond Kopya ◽  
Borel Djiappi-Tchamen ◽  
Wilson Toussile ◽  
Nadege Sonhafouo-Chiana ◽  
...  

Background: Pyrethroid resistance is rapidly expanding in An. gambiae s.l. populations across Sub-Saharan Africa. Yet there is still not enough information on the fitness cost of insecticide resistance . In the present study, the fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated.  Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. The Ngousso laboratory susceptible strain was used as control. A total of 100 females of each strain were blood fed and allowed for individual eggs laying, and then different life traits parameters such as fecundity, fertility, larval development time, emergence rate and longevity were measured. The TaqMan assay was used to screen for the presence of the L1014F and L1014S kdr mutations. Results:  Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin  and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to the susceptible (p <0.0001). Insecticide resistant larvae were found with a significantly long larval development time (10.61±0.33 days) compare to susceptible (7.57±0.35 days). The number of emerging females was significantly high in the susceptible group compared to the resistant . The adults lifespan was also significantly high for susceptible (21.73±1.19 days) compared to resistant (14.63±0.68 days). Only the L1014F-kdr allele was detected in resistant population.. Conclusion: The study suggests that pyrethroid resistance is likely associated with a high fitness cost on An.coluzzii populations. The addition of new tools targeting specifically larval stages could improve malaria vectors control and insecticide resistance management.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Polius G. Pinda ◽  
Claudia Eichenberger ◽  
Halfan S. Ngowo ◽  
Dickson S. Msaky ◽  
Said Abbasi ◽  
...  

Abstract Background Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector, Anopheles arabiensis. This study compared the insecticide resistance phenotypes between the two malaria vectors in an area where pyrethroid-LLINs are widely used. Methods The study used the World Health Organization (WHO) assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from three villages across two districts in south-eastern Tanzania and included four insecticide classes. Findings At baseline doses (1×), both species were resistant to the two candidate pyrethroids (permethrin and deltamethrin), but susceptible to the organophosphate (pirimiphos-methyl). Anopheles funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb). Both species were resistant to DDT in all villages except in one village where An. arabiensis was susceptible. Anopheles funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses, while An. arabiensis reverted to susceptibility at the 5× dose. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of the pyrethroids against both species and resulted in full susceptibility of An. arabiensis (> 98% mortality). However, for An. funestus from two villages, permethrin-associated mortalities after pre-exposure to PBO only exceeded 90% but not 98%. Conclusions In south-eastern Tanzania, where An. funestus dominates malaria transmission, the species also has much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can survive more classes of insecticides. The pyrethroid resistance in both species appears to be mostly metabolic and may be partially addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new intervention choices for such settings. In short and medium-term, these may include PBO-based LLINs or improved IRS with compounds to which the vectors are still susceptible.


2019 ◽  
Vol 56 (4) ◽  
pp. 1159-1164
Author(s):  
Koffi Mensah Ahadji-Dabla ◽  
Adjovi Djifa Amoudji ◽  
Seth Wolali Nyamador ◽  
Georges Yawo Apétogbo ◽  
Joseph Chabi ◽  
...  

Abstract A survey of susceptibility to DDT, deltamethrin, bendiocarb, and chlorpyrifos-methyl was conducted in five localities in 2011 in Togo, West Africa, to assess the insecticide resistance status of Anopheles gambiae s.l. (Diptera: Culicidae). Female populations of An. gambaie s.l. emerged from collected larvae (F0) were exposed to insecticide-impregnated papers using World Health Organization test kits for adult mosquitoes; the susceptible reference strain Kisumu was used as a control. Resistance to DDT and deltamethrin was observed within the mosquito populations tested. Anopheles gambiae s.s. and Anopheles coluzzii represented the only species recorded in the study sites. The frequency of knockdown resistance (kdr L1014F) mutation determined using polymerase chain reaction diagnostic tests was lower in An. gambiae than in An. coluzzii in all of the localities except Kolokopé. Further investigations of An. gambiae s.l. resistance are needed in Togo to help the National Malaria Control Programme in vector control decision making and implementation of resistance management strategy.


2021 ◽  
Vol 2 ◽  
Author(s):  
Yaw Akuamoah-Boateng ◽  
Ruth C. Brenyah ◽  
Sandra A. Kwarteng ◽  
Patrick Obuam ◽  
Isaac Owusu-Frimpong ◽  
...  

IntroductionRecent surge of Anopheles resistance to major classes of World Health Organization (WHO)-approved insecticides globally necessitates the need for information about local malaria vector populations. It is believed that insecticide efficacy loss may lead to operational failure of control interventions and an increase in malaria infection transmission. We investigated the susceptibility levels of malaria vectors to all classes of WHO-approved vector control insecticides and described the dynamics of malaria transmission in a peri-urban setting.MethodsFit 3–5-day-old adults that emerged from Anopheles larvae collected from several different sites in the study area were subjected to the WHO bioassay for detecting insecticide resistance. The knockdown resistance gene (kdr) mutations within the vector populations were detected using PCR. Entomological inoculation rates were determined using the human landing catch technique and Plasmodium falciparum circumsporozoite ELISA.ResultsThe malaria vectors from the study area were resistant to all classes of insecticides tested. Out of the 284 Anopheles complex specimen assayed for the resistance study, 265 (93.30%) were identified as Anopheles gambiae s.s. The kdr gene was detected in 90% of the Anopheles gambiae s.s. assayed. In an area where Anopheles coluzzii resistance to insecticides had never been reported, the kdr gene was detected in 78% of the Anopheles coluzzii sampled. The entomological inoculation rate (EIR) for the dry season was 1.44 ib/m/n, whereas the EIR for the rainy season was 2.69 ib/m/n.ConclusionsThis study provides information on the high parasite inoculation rate and insecticide resistance of malaria vectors in a peri-urban community, which is critical in the development of an insecticide resistance management program for the community.


Sign in / Sign up

Export Citation Format

Share Document