scholarly journals Genome-Wide Analysis of the PYL Gene Family and Identification of PYL Genes That Respond to Abiotic Stress in Brassica napus

Genes ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 156 ◽  
Author(s):  
Feifei Di ◽  
Hongju Jian ◽  
Tengyue Wang ◽  
Xueping Chen ◽  
Yiran Ding ◽  
...  
2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Haitao Li ◽  
Bo Wang ◽  
Qinghua Zhang ◽  
Jing Wang ◽  
Graham J. King ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1481
Author(s):  
Wei Li ◽  
Xuemin Huai ◽  
Peitao Li ◽  
Ali Raza ◽  
Muhammad Salman Mubarik ◽  
...  

Plant glutathione peroxidases (GPXs) are the main enzymes in the antioxidant defense system that sustain H2O2 homeostasis and normalize plant reaction to abiotic stress conditions. To understand the major roles of the GPX gene family in rapeseed (Brassica napus L.), for the first time, a genome-wide study identified 25 BnGPX genes in the rapeseed genome. The phylogenetic analysis discovered that GPX genes were grouped into four major groups (Group I–Group IV) from rapeseed and three closely interrelated plant species. The universal investigation uncovered that the BnGPXs gene experienced segmental duplications and positive selection pressure. Gene structure and motifs examination recommended that most of the BnGPX genes demonstrated a comparatively well-maintained exon-intron and motifs arrangement within the identical group. Likewise, we recognized five hormones-, four stress-, and numerous light-reactive cis-elements in the promoters of BnGPXs. Five putative bna-miRNAs from two families were also prophesied, targeting six BnGPXs genes. Gene ontology annotation results proved the main role of BnGPXs in antioxidant defense systems, ROS, and response to stress stimulus. Several BnGPXs genes revealed boosted expression profiles in many developmental tissues/organs, i.e., root, seed, leaf, stem, flower, and silique. The qRT-PCR based expression profiling exhibited that two genes (BnGPX21 and BnGPX23) were suggestively up-regulated against different hormones (ABA, IAA, and MeJA) and abiotic stress (salinity, cold, waterlogging, and drought) treatments. In short, our discoveries provide a basis for additional functional studies on the BnGPX genes in future rapeseed breeding programs.


2020 ◽  
Author(s):  
Yue Liu ◽  
Nannan Liu ◽  
Xiong Deng ◽  
Dongmiao Liu ◽  
Mengfei Li ◽  
...  

Abstract Background: DNA binding with one finger (Dof) transcription factors play important roles in plant growth and abiotic stress responses. Although genome-wide identification and analysis of the DOF transcription factor family has been reported in other species, no relevant studies have emerged in wheat. The aim of this study was to investigate the evolutionary and functional characteristics associated with plant growth and abiotic stress responses by genome-wide analysis of the wheat Dof transcription factor gene family. Results: Using the recently released wheat genome database (IWGSC RefSeq v1.1), we identified 96 wheat Dof gene family members, which were phylogenetically clustered into five distinct subfamilies. Gene duplication analysis revealed a broad and heterogeneous distribution of TaDofs on the chromosome groups 1 to 7, and obvious tandem duplication genes were present on chromosomes 2 and 3.Members of the same gene subfamily had similar exon-intron structures, while members of different subfamilies had obvious differences. Functional divergence analysis indicated that type-II functional divergence played a major role in the differentiation of the TaDof gene family. Positive selection analysis revealed that the Dof gene family experienced different degrees of positive selection pressure during the process of evolution, and five significant positive selection sites (30A, 31T, 33A, 102G and 104S) were identified. Additionally, nine groups of coevolving amino acid sites, which may play a key role in maintaining the structural and functional stability of Dof proteins, were identified. The results from the RNA-seq data and qRT-PCR analysis revealed that TaDof genes exhibited obvious expression preference or specificity in different organs and developmental stages, as well as in diverse abiotic stress responses. Most TaDof genes were significantly upregulated by heat, PEG and heavy metal stresses. Conclusions: The genome-wide analysis and identification of wheat DOF transcription factor family and the discovery of important amino acid sites are expected to provide new insights into the structure, evolution and function of the plant Dof gene family.


2020 ◽  
Author(s):  
Neeta Lohani ◽  
Saeid Babaei ◽  
Mohan B. Singh ◽  
Prem L. Bhalla

AbstractDOF, DNA binding with one finger proteins are plant-specific transcription factors shown to play roles in diverse plant functions. However, a—little is known about DOF protein repertoire of the allopolyploid crop, Brassica napus. Here, we report genome-wide identification and systematic analysis of the Dof transcription factor family in this important oilseed crop. We identified 117 Brassica napus Dof genes (BnaDofs). So far, this is the largest number of Dof genes reported in a single eudicot species. Based on phylogenetic analysis, BnaDofs were classified into nine groups (A, B1, B2. C1, C2.1, C2.2, C3, D1, D2). Most members belonging to a particular group displayed conserved gene structural organisation and similar protein motifs distribution. Chromosomal localisation analysis highlighted the uneven distribution of BnaDofs across all chromosomes. Evolutionary analysis exemplified that the divergence of Brassica genus from Arabidopsis, the whole genome triplication event, and the hybridisation of B. oleracea and B. rapa to form B. napus, followed by gene loss and rearrangements, led to the expansion and divergence of Dof TF gene family in B. napus. Functional annotation of BnaDof proteins, cis-element analysis of their promoters suggested potential roles in organ development, the transition from vegetative to the reproductive stage, light responsiveness, phytohormone responsiveness as well as abiotic stress responses. Furthermore, the transcriptomic analysis highlighted the preferential tissue-specific expression patters of BnaDofs and their role in response to various abiotic stress. Overall, this study provides a comprehensive understanding of the molecular structure, evolution, and potential functional roles of Dof genes in plant development and abiotic stress response.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Su ◽  
Ali Raza ◽  
Liu Zeng ◽  
Ang Gao ◽  
Yan Lv ◽  
...  

Abstract Background Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). Results In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. Conclusions This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.


2019 ◽  
Author(s):  
Yue Liu ◽  
Nannan Liu ◽  
Xiong Deng ◽  
Dongmiao Liu ◽  
Mengfei Li ◽  
...  

Abstract Background DNA binding with one finger (Dof) transcription factors play important roles in plant growth and abiotic stress responses. Although genome-wide identification and analysis of the DOF transcription factor family has been reported in other species, no relevant studies have emerged in wheat. The aim of this study was to investigate the evolutionary and functional characteristics associated with plant growth and abiotic stress responses by genome-wide analysis of the wheat Dof transcription factor gene family. Results Using the recently released wheat genome database (IWGSC RefSeq v1.1), we identified 96 wheat Dof gene family members, which were phylogenetically clustered into five distinct subfamilies. Members of the same gene subfamily had similar exon-intron structures, while members of different subfamilies had obvious differences. Functional divergence analysis indicated that type-II functional divergence played a major role in the differentiation of the TaDof gene family. Positive selection analysis revealed that the Dof gene family experienced different degrees of positive selection pressure during the process of evolution, and five significant positive selection sites (30A, 31T, 33A, 102G and 104S) were identified. Additionally, nine groups of coevolving amino acid sites, which may play a key role in maintaining the structural and functional stability of Dof proteins, were identified. The results from the RNA-seq data and RT-qPCR analysis revealed that TaDof genes exhibited obvious expression preference or specificity in different organs and developmental stages, as well as in diverse abiotic stress responses. Most TaDof genes were significantly upregulated by heat, PEG and heavy metal stresses. Conclusions The genome-wide analysis and identification of wheat DOF transcription factor family and the discovery of important amino acid sites are expected to provide new insights into the structure, evolution and function of the plant Dof gene family.


Sign in / Sign up

Export Citation Format

Share Document