scholarly journals Genome-wide analysis and expression patterns of lipid phospholipid phospholipase gene family in Brassica napus L.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wei Su ◽  
Ali Raza ◽  
Liu Zeng ◽  
Ang Gao ◽  
Yan Lv ◽  
...  

Abstract Background Lipid phosphate phosphatases (LPP) are critical for regulating the production and degradation of phosphatidic acid (PA), an essential signaling molecule under stress conditions. Thus far, the LPP family genes have not been reported in rapeseed (Brassica napus L.). Results In this study, a genome-wide analysis was carried out to identify LPP family genes in rapeseed that respond to different stress conditions. Eleven BnLPPs genes were identified in the rapeseed genome. Based on phylogenetic and synteny analysis, BnLPPs were classified into four groups (Group I-Group IV). Gene structure and conserved motif analysis showed that similar intron/exon and motifs patterns occur in the same group. By evaluating cis-elements in the promoters, we recognized six hormone- and seven stress-responsive elements. Further, six putative miRNAs were identified targeting three BnLPP genes. Gene ontology analysis disclosed that BnLPP genes were closely associated with phosphatase/hydrolase activity, membrane parts, phosphorus metabolic process, and dephosphorylation. The qRT-PCR based expression profiles of BnLPP genes varied in different tissues/organs. Likewise, several gene expression were significantly up-regulated under NaCl, PEG, cold, ABA, GA, IAA, and KT treatments. Conclusions This is the first report to describe the comprehensive genome-wide analysis of the rapeseed LPP gene family. We identified different phytohormones and abiotic stress-associated genes that could help in enlightening the plant tolerance against phytohormones and abiotic stresses. The findings unlocked new gaps for the functional verification of the BnLPP gene family during stresses, leading to rapeseed improvement.

2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Li ◽  
Keyun Lin ◽  
Shuai Zhang ◽  
Jian Wu ◽  
Yujie Fang ◽  
...  

Myeloblastosis (MYB)-related transcription factors comprise a large subfamily of the MYB family. They play significant roles in plant development and in stress responses. However, MYB-related proteins have not been comprehensively investigated in rapeseed (Brassica napus L.). In the present study, a genome-wide analysis of MYB-related transcription factors was performed in rapeseed. We identified 251 Brassica napus MYB (BnMYB)-related members, which were divided phylogenetically into five clades. Evolutionary analysis suggested that whole genome duplication and segmental duplication events have played a significant role in the expansion of BnMYB-related gene family. Selective pressure of BnMYB-related genes was estimated using the Ka/Ks ratio, which indicated that BnMYB-related genes underwent strong purifying selection during evolution. In silico analysis showed that various development-associated, phytohormone-responsive, and stress-related cis-acting regulatory elements were enriched in the promoter regions of BnMYB-related genes. Furthermore, MYB-related genes with tissue or organ-specific, stress-responsive expression patterns were identified in B. napus based on temporospatial and abiotic stress expression profiles. Among the stress-responsive MYB-related genes, BnMRD107 was strongly induced by drought stress, and was therefore selected for functional study. Rapeseed seedlings overexpressing BnMRD107 showed improved resistance to osmotic stress. Our findings not only lay a foundation for further functional characterization of BnMYB-related genes, but also provide valuable clues to determine candidate genes for future genetic improvement of B. napus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hong Nan ◽  
Richard A. Ludlow ◽  
Min Lu ◽  
Huaming An

Dof (DNA binding with one finger) proteins play important roles in plant development and defense regulatory networks. In the present study, we report a genome-wide analysis of rose Dof genes (RchDof), including phylogenetic inferences, gene structures, chromosomal locations, gene duplications, and expression diversity. A total of 24 full-length RchDof genes were identified in Rosa chinensis, which were assigned to nine distinct subgroups. These RchDof genes were unevenly distributed on rose chromosomes. The genome-scale analysis of synteny indicated that segmental duplication events may have played a major role in the evolution of the RchDof gene family. Analysis of cis-acting elements revealed putative functions of Dofs in rose during development as well as under numerous biotic and abiotic stress conditions. Moreover, the expression profiles derived from qRT-PCR experiments demonstrated distinct expression patterns in various tissues, and gene expression divergence existed among the duplicated RchDof genes, suggesting a fundamentally functional divergence of the duplicated Dof paralogs in rose. The gene expression analysis of RchDofs under drought and salt stress conditions was also performed. The present study offered novel insights into the evolution of RchDofs and can aid in the further functional characterization of its candidate genes.


2021 ◽  
Vol 22 (8) ◽  
pp. 4281
Author(s):  
Ali Raza ◽  
Su Wei ◽  
Gao Ang ◽  
Sundas Saher Mehmood ◽  
Muhammad Azhar Hussain ◽  
...  

Catalase (CAT) is an antioxidant enzyme expressed by the CAT gene family and exists in almost all aerobic organisms. Environmental stresses induce the generation of reactive oxygen species (ROS) that eventually hinder plant growth and development. The CAT enzyme translates the hydrogen peroxide (H2O2) to water (H2O) and reduce the ROS levels to shelter the cells' death. So far, the CAT gene family has not been reported in rapeseed (Brassica napus L.). Therefore, a genome-wide comprehensive analysis was conducted to classify the CAT genes in the rapeseed genome. The current study identified 14 BnCAT genes in the rapeseed genome. Based on phylogenetic and synteny analysis, the BnCATs belong to four groups (Groups I–IV). A gene structure and conserved motif analysis showed that Group I, Group II, and Group IV possess almost the same intron/exon pattern, and an equal number of motifs, while Group III contains diverse structures and contain 15 motifs. By analyzing the cis-elements in the promoters, we identified five hormone-correlated responsive elements and four stress-related responsive elements. Further, six putative bna-miRNAs were also identified, targeting three genes (BnCAT4, BnCAT6, and BnCAT8). Gene ontology (GO) enrichment analysis showed that the BnCAT genes were largely related to cellular organelles, ROS response, stimulus response, stress response, and antioxidant enzymes. Almost 10 BnCAT genes showed higher expression levels in different tissues, i.e., root, leaf, stem, and silique. The expression analysis showed that BnCAT1–BnCAT3 and BnCAT11–BnCAT13 were significantly upregulated by cold, salinity, abscisic acid (ABA), and gibberellic acid (GA) treatment, but not by drought and methyl jasmonate (MeJA). Notably, most of the genes were upregulated by waterlogging stress, except BnCAT6, BnCAT9, and BnCAT10. Our results opened new windows for future investigations and provided insights into the CAT family genes in rapeseed.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yuzhu Huo ◽  
Wangdan Xiong ◽  
Kunlong Su ◽  
Yu Li ◽  
Yawen Yang ◽  
...  

The plant-specific transcription factor TCPs play multiple roles in plant growth, development, and stress responses. However, a genome-wide analysis of TCP proteins and their roles in salt stress has not been declared in switchgrass (Panicum virgatum L.). In this study, 42 PvTCP genes (PvTCPs) were identified from the switchgrass genome and 38 members can be anchored to its chromosomes unevenly. Nine PvTCPs were predicted to be microRNA319 (miR319) targets. Furthermore, PvTCPs can be divided into three clades according to the phylogeny and conserved domains. Members in the same clade have the similar gene structure and motif localization. Although all PvTCPs were expressed in tested tissues, their expression profiles were different under normal condition. The specific expression may indicate their different roles in plant growth and development. In addition, approximately 20 cis-acting elements were detected in the promoters of PvTCPs, and 40% were related to stress response. Moreover, the expression profiles of PvTCPs under salt stress were also analyzed and 29 PvTCPs were regulated after NaCl treatment. Taken together, the PvTCP gene family was analyzed at a genome-wide level and their possible functions in salt stress, which lay the basis for further functional analysis of PvTCPs in switchgrass.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1481
Author(s):  
Wei Li ◽  
Xuemin Huai ◽  
Peitao Li ◽  
Ali Raza ◽  
Muhammad Salman Mubarik ◽  
...  

Plant glutathione peroxidases (GPXs) are the main enzymes in the antioxidant defense system that sustain H2O2 homeostasis and normalize plant reaction to abiotic stress conditions. To understand the major roles of the GPX gene family in rapeseed (Brassica napus L.), for the first time, a genome-wide study identified 25 BnGPX genes in the rapeseed genome. The phylogenetic analysis discovered that GPX genes were grouped into four major groups (Group I–Group IV) from rapeseed and three closely interrelated plant species. The universal investigation uncovered that the BnGPXs gene experienced segmental duplications and positive selection pressure. Gene structure and motifs examination recommended that most of the BnGPX genes demonstrated a comparatively well-maintained exon-intron and motifs arrangement within the identical group. Likewise, we recognized five hormones-, four stress-, and numerous light-reactive cis-elements in the promoters of BnGPXs. Five putative bna-miRNAs from two families were also prophesied, targeting six BnGPXs genes. Gene ontology annotation results proved the main role of BnGPXs in antioxidant defense systems, ROS, and response to stress stimulus. Several BnGPXs genes revealed boosted expression profiles in many developmental tissues/organs, i.e., root, seed, leaf, stem, flower, and silique. The qRT-PCR based expression profiling exhibited that two genes (BnGPX21 and BnGPX23) were suggestively up-regulated against different hormones (ABA, IAA, and MeJA) and abiotic stress (salinity, cold, waterlogging, and drought) treatments. In short, our discoveries provide a basis for additional functional studies on the BnGPX genes in future rapeseed breeding programs.


2020 ◽  
Vol 21 (18) ◽  
pp. 6594
Author(s):  
Shuting Zhang ◽  
Qin Zhou ◽  
Feng Chen ◽  
Lan Wu ◽  
Baojun Liu ◽  
...  

The plant-specific TCP transcription factors are well-characterized in both monocots and dicots, which have been implicated in multiple aspects of plant biological processes such as leaf morphogenesis and senescence, lateral branching, flower development and hormone crosstalk. However, no systematic analysis of the petunia TCP gene family has been described. In this work, a total of 66 petunia TCP genes (32 PaTCP genes in P. axillaris and 34 PiTCP genes in P. inflata) were identified. Subsequently, a systematic analysis of 32 PaTCP genes was performed. The phylogenetic analysis combined with structural analysis clearly distinguished the 32 PaTCP proteins into two classes—class Ι and class Ⅱ. Class Ⅱ was further divided into two subclades, namely, the CIN-TCP subclade and the CYC/TB1 subclade. Plenty of cis-acting elements responsible for plant growth and development, phytohormone and/or stress responses were identified in the promoter of PaTCPs. Distinct spatial expression patterns were determined among PaTCP genes, suggesting that these genes may have diverse regulatory roles in plant growth development. Furthermore, differential temporal expression patterns were observed between the large- and small-flowered petunia lines for most PaTCP genes, suggesting that these genes are likely to be related to petal development and/or petal size in petunia. The spatiotemporal expression profiles and promoter analysis of PaTCPs indicated that these genes play important roles in petunia diverse developmental processes that may work via multiple hormone pathways. Moreover, three PaTCP-YFP fusion proteins were detected in nuclei through subcellular localization analysis. This is the first comprehensive analysis of the petunia TCP gene family on a genome-wide scale, which provides the basis for further functional characterization of this gene family in petunia.


2018 ◽  
Vol 19 (9) ◽  
pp. 2478 ◽  
Author(s):  
Qinglong Dong ◽  
Dingyue Duan ◽  
Shuang Zhao ◽  
Bingyao Xu ◽  
Jiawei Luo ◽  
...  

Stress-associated proteins (SAPs) are novel A20/AN1 zinc finger domain-containing proteins that are now favorable targets to improve abiotic stress tolerance in plants. However, the SAP gene family and their biological functions have not been identified in the important fruit crop apple (Malus × domestica Borkh.). We conducted a genome-wide analysis and cloning of this gene family in apple and determined that the overexpression of MdSAP15 enhances drought tolerance in Arabidopsis plants. We identified 30 SAP genes in the apple genome. Phylogenetic analysis revealed two major groups within that family. Results from sequence alignments and analyses of 3D structures, phylogenetics, genomics structure, and conserved domains indicated that apple SAPs are highly and structurally conserved. Comprehensive qRT-PCR analysis found various expression patterns for MdSAPs in different tissues and in response to a water deficit. A transgenic analysis showed that the overexpression of MdSAP15 in transgenic Arabidopsis plants markedly enhanced their tolerance to osmotic and drought stresses. Our results demonstrate that the SAP genes are highly conserved in plant species, and that MdSAP15 can be used as a target gene in genetic engineering approaches to improve drought tolerance.


2020 ◽  
Author(s):  
Hongyan Shen ◽  
Qiuping Tan ◽  
Wei Xiao ◽  
Wenpeng Deng ◽  
Xiaoyan Yu ◽  
...  

Abstract Background: Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of cell wall-associated enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks. However, knowledge of this gene family in the model monocot Brachypodium distachyon is limited. Results: A total of 29 BdXTH genes were identified from the reference genome, and these were further divided into three main groups (Group I/II, Group III, and the Ancestral Group) through comparative phylogenetic analysis. Gene structure and protein motif analysis indicate that closely clustered BdXTH genes are relatively conserved within each group. A highly conserved amino acid domain (DEIDFEFLG) responsible for catalytic activity was identified in all BdXTH proteins. We detected three pairs of segmentally duplicated BdXTH genes and five groups of tandemly duplicated BdXTH genes, which have played important roles in the expansion of the BdXTH gene family. Cis -elements related to hormones, growth, and abiotic stress responses were identified in the promoters of each BdXTH gene. Most BdXTH genes have distinct expression patterns in different tissues and growth stages. Furthermore, when roots were treated with two abiotic stresses (salinity and drought) and four plant hormones (IAA, auxin; GA3, gibberellin; ABA, abscisic acid and BR, brassinolide), the expression levels of many BdXTH genes changed significantly, suggesting possible roles in response to various environmental stimuli and plant hormones. Conclusion: In this study, we performed genome-wide identification, characterization, and expression pattern analysis of the XTH gene family in Brachypodium, which provide valuable information for further elucidation of the biological functions of BdXTH genes in the model grass B. distachyon.


2021 ◽  
Author(s):  
Guobin Zhang ◽  
Zeyu Zhang ◽  
Shilei Luo ◽  
Xia Li ◽  
Jian Lyu ◽  
...  

Abstract Background: Type 2C protein phosphatase (PP2Cs) is a negative regulator of ABA signaling pathway, which play important roles in stress signal transduction in plants. However, cucumber (Cucumis sativus L.), as an important economic vegetable, has little research on its PP2C genes family. Results: This study conducted a genome-wide investigation of CsPP2C gene family. Through bioinformatics analysis, 56 CsPP2C genes were identified in cucumber. Based on phylogenetic analysis, the PP2C genes of cucumber and Arabidopsis were divided into 13 groups. Gene structure and conserved motif analysis showed that CsPP2C genes in the same group had similar gene structure and conserved domains. Collinearity analysis showed that segmental duplication events played a key role in the expansion of cucumber PP2C genes family. In addition, the expression of CsPP2Cs under different abiotic treatments was analyzed by qRT-PCR. The results showed that CsPP2C family genes showed different expression patterns under ABA, drought, salt and cold treatment, and a significantly responsive gene CsPP2Cs was obtained (CsPP2C3). By predicting the cis-elements in the promoter, we found that all CsPP2C members contained ABA response elements (ABRE) and drought response elements (MYC). Additionally, the expression patterns of CsPP2C genes were specific in different tissues. Conclusions: The results of this study provide a reference for the genome-wide identification of PP2C gene family in other species, and provide a basis for future studies on the function of PP2C gene in cucumber.


2021 ◽  
Vol 22 (19) ◽  
pp. 10269
Author(s):  
Li Zhang ◽  
Cheng Li ◽  
Danni Yang ◽  
Yuhua Wang ◽  
Yongping Yang ◽  
...  

Teosinte branched1/cycloidea/proliferating cell factor (TCP) gene family members are plant-specific transcription factors that regulate plant growth and development by controlling cell proliferation and differentiation. However, there are no reported studies on the TCP gene family in Dendrobium catenatum Lindl. Here, a genome-wide analysis of TCP genes was performed in D. catenatum, and 25 TCP genes were identified. A phylogenetic analysis classified the family into two clades: Class I and Class II. Genes in the same clade share similar conserved motifs. The GFP signals of the DcaTCP-GFPs were detected in the nuclei of tobacco leaf epidermal cells. The activity of DcaTCP4, which contains the miR319a-binding sequence, was reduced when combined with miR319a. A transient activity assay revealed antagonistic functions of Class I and Class II of the TCP proteins in controlling leaf development through the jasmonate-signaling pathway. After different phytohormone treatments, the DcaTCP genes showed varied expression patterns. In particular, DcaTCP4 and DcaTCP9 showed opposite trends after 3 h treatment with jasmonate. This comprehensive analysis provides a foundation for further studies on the roles of TCP genes in D. catenatum.


Sign in / Sign up

Export Citation Format

Share Document