scholarly journals Structural and Stratigraphic Setting of Campagna and Giffoni Tectonic Windows: New Insights on the Orogenic Evolution of the Southern Apennines (Italy)

Geosciences ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 405
Author(s):  
Stefano Vitale ◽  
Ernesto Paolo Prinzi ◽  
Maria Monda ◽  
Francesco D’Assisi Tramparulo ◽  
Sabatino Ciarcia

We present a structural study on the tectonic windows of Giffoni and Campagna, located in the western sector of the southern Apennines (Italy). We analyzed thrusts, folds, and related minor deformation structures. Here, a major in-sequence E-verging thrust fault juxtaposes Meso-Cenozoic successions of the Apennine Platform (Picentini Mts unit) and the Lagonegro-Molise Basin (Frigento unit). However, out-of-sequence thrusts duplicated the tectonic pile with the interposition of the upper Miocene wedge-top basin deposits of the Castelvetere Group. We reconstructed the orogenic evolution of these two tectonic windows, including five deformation phases. The first (D1) was related to the in-sequence thrusting with minor thrusts and folds, widespread both in the footwall and the hanging wall. A subsequent extension (D2) has formed normal faults crosscutting the D1 thrusts and folds. All structures were subsequently affected by two shortening stages (D3 and D4), which also deformed the upper Miocene wedge top basin deposits of the Castelvetere Group. We interpreted the D3–D4 structures as related to an out-of-sequence thrust system defined by a main frontal E-verging thrust and lateral ramps characterized by N and S vergences. Low-angle normal faults were formed in the hanging wall of the major thrusts. Out-of-sequence thrusts are observed in the whole southern Apennines, recording a crustal shortening event that occurred in the late Messinian–early Pliocene. Finally, we suggest that the two tectonic windows are the result of the formation of an E–W trending regional antiform, associated with a late S-verging back-thrust, that has been eroded and crosscut by normal faults (D5) in the Early Pleistocene.

2021 ◽  
Author(s):  
Vitale Stefano ◽  
Prinzi Ernesto Paolo ◽  
Francesco D'Assisi Tramparulo ◽  
Sabatino Ciarcia

<p>We present a structural study on late Miocene-early Pliocene out-of-sequence thrusts affecting the southern Apennine chain. The analyzed structures are exposed in the Campania region (southern Italy). Here, leading thrusts bound the N-NE side of the carbonate ridges that form the regional mountain backbone. In several outcrops, the Mesozoic carbonates are superposed onto the unconformable wedge-top basin deposits of the upper Miocene Castelvetere Group, providing constraints to the age of the activity of this thrusting event. We further analyzed the tectonic windows of Giffoni and Campagna, located on the rear of the leading thrust. We reconstructed the orogenic evolution of this part of the orogen. The first was related to the in-sequence thrusting with minor thrusts and folds, widespread both in the footwall and in the hanging wall. A subsequent extension has formed normal faults crosscutting the early thrusts and folds. All structures were subsequently affected by two shortening stages, which also deformed the upper Miocene wedge top basin deposits of the Castelvetere Group. We interpreted these late structures as related to an out-of-sequence thrust system defined by a main frontal E-verging thrust and lateral ramps characterized by N and S vergences. Associated with these thrusting events, LANFs were formed in the hanging wall of the major thrusts. Such out-of-sequence thrusts are observed in the whole southern Apennines and record a thrusting event that occurred in the late Messinian-early Pliocene. We related this tectonic episode to the positive inversion of inherited normal faults located in the Paleozoic basement. These envelopments thrust upward crosscut the allochthonous wedge, including, in the western zone of the chain, the upper Miocene wedge-top basin deposits. Finally, we suggest that the two tectonic windows are the result of the formation of an E-W trending regional antiform, associated with a late S-verging back-thrust, that has been eroded and crosscut by Early Pleistocene normal faults.</p>


Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 301 ◽  
Author(s):  
Stefano Vitale ◽  
Ernesto Paolo Prinzi ◽  
Francesco D’Assisi Tramparulo ◽  
Claudio De Paola ◽  
Rosa Di Maio ◽  
...  

We present a structural study on late Miocene-early Pliocene out-of-sequence thrusts affecting the southern Apennine orogenic belt. The analyzed structures are exposed in the Campania region (southern Italy). Here, thrusts bound the N-NE side of the carbonate ridges that form the regional mountain backbone. In several outcrops, the Mesozoic carbonates are superposed onto the unconformable wedge-top basin deposits of the upper Miocene Castelvetere Group, providing constraints to the age of the activity of this thrusting event. Moreover, a 4-km-long N-S oriented electrical resistivity tomography profile, carried out along the Caserta mountains, sheds light on the structure of this thrust system in an area where it is not exposed. Further information was carried out from a tunnel excavation that allowed us to study some secondary fault splays. The kinematic analysis of out-of-sequence major and minor structures hosted both in the hanging wall (Apennine Platform carbonates) and footwall (Castelvetere Group deposits and Lagonegro-Molise Basin units) indicates the occurrence of two superposed shortening directions, about E-W and N-S, respectively. We associated these compressive structures to an out-of-sequence thrusting event defined by frontal thrusts verging to the east and lateral ramp thrusts verging to the north and south. We related the out-of-sequence thrusting episode to the positive inversion of inherited normal faults located in the Paleozoic basement. These envelopments thrust upward to crosscut the allochthonous wedge, including, in the western zone of the chain, the upper Miocene wedge-top basin deposits.


2020 ◽  
Author(s):  
Sabatino Ciarcia ◽  
Ernesto Paolo Prinzi ◽  
Francesco D’Assisi Tramparulo ◽  
Stefano Vitale

<p>The southern Apennines are a fold-and-thrust belt formed since the lower Miocene until the middle Pleistocene (e.g., Vitale and Ciarcia, 2013). Although a wide literature exists about the geology of this orogenic chain, few are the studies about the kinematics of the major thrusts. With this in mind, this work is aimed to investigate the out-of-sequence regional thrust system exposed in the Campania region. This system is characterized by a frontal ramp exposed along the N-NE side of the platform carbonate ridge forming the regional mountain backbone. The main structure is also exposed as a flat thrust in the Campagna and Giffoni tectonic windows located in the internal sector of the chain. We analyzed several outcrops; in some of them, we observed the Mesozoic carbonates superposed onto the upper Miocene wedge-top basin deposits of the Castelvetere Group. The kinematic analysis of major and minor structures suggests the occurrence of two thrust fault sets: (i) the oldest indicates an eastward tectonic vergence, whereas (ii) the youngest, and more developed, toward the north. In the external zones, the N-S shortening was synchronous with the deposition of the upper Messinian-lowermost Pliocene Altavilla Fm. The origin of this out-of-sequence regional deformation is still matter of debate (e.g., Vitale et al., 2017). In our opinion it was the shallow expression of a deep-seated thrusting episode within the buried Apulian slab. It was dominated by thrust ramps (thick-skinned tectonics) mainly verging to East, and by the N-verging structures associated to lateral ramps.</p><p><strong>References</strong></p><p>Vitale Stefano and Ciarcia Sabatino (2013) - Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria-Peloritani Terrane system (Italy). Tectonophysics, 583, 164–182.</p><p>Vitale Stefano, Tramparulo Francesco d'Assisi, Ciarcia Sabatino, Amore F. Ornella, Prinzi Ernesto Paolo and Laiena Fabio (2017) - The northward tectonic transport in the southern Apennines: examples from the Capri Island and western Sorrento Peninsula (Italy). International Journal of Earth Sciences (Geologische Rundschau), 106, 97–113.</p>


1989 ◽  
Vol 26 (11) ◽  
pp. 2356-2364 ◽  
Author(s):  
Michael R. Hudec ◽  
Gregory A. Davis

In southeastern Glacier National Park the Lewis thrust is discordant to structures in its hanging wall, strongly suggesting that it formed out of sequence. Faults that are truncated downward against the Lewis thrust are inferred to have originally soled into a structurally lower thrust fault, in which case displacement must have shifted out of sequence from this original fault (here named the Lewis I thrust) to the present-day, structurally higher surface (the Lewis II thrust) at some time during the evolution of the Lewis thrust system. Because of variations in the geometry of the Lewis thrust system along its 450 km strike length, it is likely that the formation of such out-of-sequence thrusts varied in time and in space. Consequently the present-day Lewis thrust may be a composite surface, composed of numerous segments that were not all active at the same time.Many of the fold and fault structures in the study area that are truncated downward agains the Lewis thrust lie within the Spot Mountain duplex, in the basal part of the Lewis allochthon. The Spot Mountain duplex is noteworthy in that both its roof thrust (the Spot Mountain fault) and its floor thrust (the Lewis thrust) formed out of sequence, after most of the structures within the duplex. The term "duplex" in this case has no genetic connotations but refers only to a geometry in which the highly deformed rocks constituting the base of the Lewis thrust plate are separated from less deformed rocks by an enveloping pair of thrust faults.


2018 ◽  
Vol 40 (1) ◽  
pp. 463
Author(s):  
E. Skourtsos ◽  
E. Lekkas

On the 8th of October 2005 an earthquake of magnitude 7.6 occurred in northern Pakistan. The earthquake epicenter was located in Pakistan Kashmir, 90 km north of Islamabad, the capital of Pakistan. The focal depth was 26 km triggered by a thrust fault striking NW-SE and of 40o dip angle towards the NE. The mean fault slip was estimated as 4 m. The aftershocks epicenters were located northeastwards of the Indus - Kohistan Seismic Zone. The structures that trace the activated fault were distributed along the southwestern limb of the Muzaffarabad anticline and grouped as structures of flexural-slip folding, structures that are correlated to folding and normal faults. The latter may represent overturned segments of the seismic fault on the high-angle limb of the Muzaffarrabad anticline. This anticline is located on the hanging wall of a thrust fault with geometry and kinematics characteristics similar to those of the Indus — Kohistan Seismic Zone. This zone, from the Hazara - Kashmir Syntaxis to the Swat River represents a blind thrust under the metamorphosed rocks of the Lower Himalayas, while in the region of Sub- Himalayas becomes a distinct structure. This thrust fault is linked in depth to the Main Himalaya Thrust through which, the cratonic basement of India is subducting under its sedimentary cover.


SEG Discovery ◽  
2000 ◽  
pp. 1-15
Author(s):  
IAN R. GENDALL ◽  
LUIS A. QUEVEDO ◽  
RICHARD H. SILLITOE ◽  
RICHARD M. SPENCER ◽  
CARLOS O. PUENTE ◽  
...  

ABSTRACT Grassroots exploration has led to discovery of 10 porphyry copper prospects in the previously unexplored Jurassic arc of southeastern Ecuador. The prospects are located in steep, wet, jungle-covered terrain in the Pangui area, part of the Cordillera del Cóndor. The exploration program, initially mounted in search of gold in the Oriente foreland basin, employed panned-concentrate drainage sampling. Follow-up of the resulting anomalies utilized soil sampling combined with rock-chip sampling and geologic mapping of the restricted creek outcrops. Scout and infill drilling of two of the prospects, San Carlos and Panantza, has shown hypogene mineralization averaging 0.5 to 0.7 percent Cu overlain by thin (averaging <30 m) zones of chalcocite enrichment or oxidized copper mineralization. The prospects are centered on small, composite granocliorite to monzogranite porphyry stocks that cut the Zamora batholith or, in one case, a satellite pluton. The batholith is emplaced into Jurassic volcanosedimentary formations, which concealed Triassic extensional half-grabens before being incorporated into the Subandean fold-thrust belt along the western margin of the Oriente basin. North- and northwest-striking normal faults in the hanging wall of a major north-striking fault zone controlled the locations of most of the porphyry centers. K silicate and variably overprinted intermediate argillic alteration, containing chalcopyrite as the principal sulfide mineral, characterize the central parts of most of the porphyry prospects and grade outward to pyrite-dominated propylitic halos. Overprinted sericitic alteration is generally less widely developed, although apparently shallower erosion at the Warintza and Wawame prospects resulted in preservation of extensive pyrite-rich sericitic zones. All the prospects contain appreciable (60–250 ppm) molybdenum, but gold tenors are low except at Panantza and Wawame (~0.15 and 0.2 g/t, respectively). Supergene oxidation and chalcocite enrichment zones are immature because of inhibition by the rapid erosion prevalent in the Pangui area. Supergene profiles attain their maximum development on ridge crests but are essentially absent along major creeks. Discovery of the Pangui belt, along with other recently defined porphyry copper systems in northern Perú, Indonesia, and the Philippines, underscores yet again the efficacy of drainage geochemistry as an exploration technique in tropical and subtropical arc terranes as well as the outstanding potential for additional exposed deposits in poorly explored parts of the circum-Pacific region.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 837-849 ◽  
Author(s):  
D. Díaz ◽  
A. Maksymowicz ◽  
G. Vargas ◽  
E. Vera ◽  
E. Contreras-Reyes ◽  
...  

Abstract. The crustal-scale west-vergent San Ramón thrust fault system, which lies at the foot of the main Andean Cordillera in central Chile, is a geologically active structure with manifestations of late Quaternary complex surface rupture on fault segments along the eastern border of the city of Santiago. From the comparison of geophysical and geological observations, we assessed the subsurface structural pattern that affects the sedimentary cover and rock-substratum topography across fault scarps, which is critical for evaluating structural models and associated seismic hazard along the related faults. We performed seismic profiles with an average length of 250 m, using an array of 24 geophones (Geode), with 25 shots per profile, to produce high-resolution seismic tomography to aid in interpreting impedance changes associated with the deformed sedimentary cover. The recorded travel-time refractions and reflections were jointly inverted by using a 2-D tomographic approach, which resulted in variations across the scarp axis in both the velocities and the reflections that are interpreted as the sedimentary cover-rock substratum topography. Seismic anisotropy observed from tomographic profiles is consistent with sediment deformation triggered by west-vergent thrust tectonics along the fault. Electrical soundings crossing two fault scarps were used to construct subsurface resistivity tomographic profiles, which reveal systematic differences between lower resistivity values in the hanging wall with respect to the footwall of the geological structure, and clearly show well-defined east-dipping resistivity boundaries. These boundaries can be interpreted in terms of structurally driven fluid content change between the hanging wall and the footwall of the San Ramón fault. The overall results are consistent with a west-vergent thrust structure dipping ~55° E in the subsurface beneath the piedmont sediments, with local complexities likely associated with variations in fault surface rupture propagation, fault splays and fault segment transfer zones.


Sign in / Sign up

Export Citation Format

Share Document