scholarly journals Reviewing Martian Atmospheric Noble Gas Measurements: From Martian Meteorites to Mars Missions

Geosciences ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 439
Author(s):  
Thomas Smith ◽  
P. M. Ranjith ◽  
Huaiyu He ◽  
Rixiang Zhu

Martian meteorites are the only samples from Mars available for extensive studies in laboratories on Earth. Among the various unresolved science questions, the question of the Martian atmospheric composition, distribution, and evolution over geological time still is of high concern for the scientific community. Recent successful space missions to Mars have particularly strengthened our understanding of the loss of the primary Martian atmosphere. Noble gases are commonly used in geochemistry and cosmochemistry as tools to better unravel the properties or exchange mechanisms associated with different isotopic reservoirs in the Earth or in different planetary bodies. The relatively low abundance and chemical inertness of noble gases enable their distributions and, consequently, transfer mechanisms to be determined. In this review, we first summarize the various in situ and laboratory techniques on Mars and in Martian meteorites, respectively, for measuring noble gas abundances and isotopic ratios. In the second part, we concentrate on the results obtained by both in situ and laboratory measurements, their complementarity, and the implications for the Martian atmospheric dynamic evolution through the last billions of years. Here, we intend on demonstrating how the various efforts established the Mars-Martian meteorites connection and its significance to our understanding of the red planet.

2019 ◽  
Vol 491 (1) ◽  
pp. 488-494 ◽  
Author(s):  
K E Mandt ◽  
O Mousis ◽  
S Treat

ABSTRACT The abundances of the heavy elements and isotopic ratios in the present atmospheres of the giant planets can be used to trace the composition of volatiles that were present in the icy solid material that contributed to their formation. The first definitive measurements of noble gas abundances and isotope ratios at comet 67P/Churyumov–Gerasimenko (67P/C–G) were recently published by Marty et al. (2017) and Rubin et al. (2018, 2019). The implications of these abundances for the formation conditions of the 67P/C–G building blocks were then evaluated by Mousis et al. (2018a). We add here an analysis of the implications of these results for understanding the formation conditions of the building blocks of the Ice Giants and discuss how future measurements of Ice Giant atmospheric composition can be interpreted. We first evaluate the best approach for comparing comet observations with giant planet composition, and then determine what would be the current composition of the Ice Giant atmospheres based on four potential sources for their building blocks. We provide four scenarios for the origin of the Ice Giants building blocks based on four primary constraints for building block composition: (1) the bulk abundance of carbon relative to nitrogen, (2) noble gas abundances relative to carbon and nitrogen, (3) abundance ratios Kr/Ar and Xe/Ar, and (4) Xe isotopic ratios. In situ measurements of these quantities by a Galileo-like entry probe in the atmosphere(s) of Uranus and/or Neptune should place important constraints on the formation conditions of the Ice Giants.


Author(s):  
O. Mousis ◽  
D. H. Atkinson ◽  
R. Ambrosi ◽  
S. Atreya ◽  
D. Banfield ◽  
...  

AbstractRemote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our Solar System. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases’ abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe. Here we describe the main scientific goals to be addressed by the future in situ exploration of Saturn, Uranus, and Neptune, placing the Galileo probe exploration of Jupiter in a broader context. An atmospheric entry probe targeting the 10-bar level would yield insight into two broad themes: i) the formation history of the giant planets and that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. An atmospheric probe could represent a significant ESA contribution to a future NASA New Frontiers or flagship mission to be launched toward Saturn, Uranus, and/or Neptune.


2013 ◽  
Vol 28 (1) ◽  
pp. 42-48
Author(s):  
Tim Sander ◽  
Thomas Marx ◽  
Jürgen Engel ◽  
Werner Aeschbach-Hertig

1998 ◽  
Vol 11 (2) ◽  
pp. 1057-1064
Author(s):  
P.R. Mahaffy ◽  
S.K. Atreya ◽  
H.B. Niemann ◽  
T.C. Owen

AbstractInsights into both the detailed composition of Jupiter’s atmosphere and unexpected local meteorological phenomena were revealed by in-situ measurements from the Galileo Probe Neutral Mass Spectrometer taken on December 7, 1995. Measurements of the neutral atmospheric composition from a pressure of 0.5 bar to approximately 21 bar revealed the mixing ratios of the major species helium and hydrogen as well as numerous minor constituents including methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. This instrument measured the isotope ratios3He/4He, D/H, and13C/12C as well as the isotopes of neon, argon, krypton, and xenon. A summary is given of progress that has been made in refining preliminary estimates of the abundances of condensable volatiles and noble gases as a result of an ongoing laboratory study using a nearly identical engineering unit. The depletion of simple condensable species to depths well below their expected condensation levels is explained by a local downdraft in the region of the probe entry. The mass spectrometer data suggests that different species may recover at different depths and this may be due to lateral mixing of Jovian air.


2015 ◽  
Vol 15 (17) ◽  
pp. 10087-10092 ◽  
Author(s):  
L. Kattner ◽  
B. Mathieu-Üffing ◽  
J. P. Burrows ◽  
A. Richter ◽  
S. Schmolke ◽  
...  

Abstract. In 1997 the International Maritime Organisation (IMO) adopted MARPOL Annex VI to prevent air pollution by shipping emissions. It regulates, among other issues, the sulfur content in shipping fuels, which is transformed into the air pollutant sulfur dioxide (SO2) during combustion. Within designated Sulfur Emission Control Areas (SECA), the sulfur content was limited to 1 %, and on 1 January 2015, this limit was further reduced to 0.1 %. Here we present the set-up and measurement results of a permanent ship emission monitoring site near Hamburg harbour in the North Sea SECA. Trace gas measurements are conducted with in situ instruments and a data set from September 2014 to January 2015 is presented. By combining measurements of carbon dioxide (CO2) and SO2 with ship position data, it is possible to deduce the sulfur fuel content of individual ships passing the measurement station, thus facilitating the monitoring of compliance of ships with the IMO regulations. While compliance is almost 100 % for the 2014 data, it decreases only very little in 2015 to 95.4 % despite the much stricter limit. We analysed more than 1400 ship plumes in total and for months with favourable conditions, up to 40 % of all ships entering and leaving Hamburg harbour could be checked for their sulfur fuel content.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 457 ◽  
Author(s):  
Stefan Emeis ◽  
Norbert Kalthoff ◽  
Bianca Adler ◽  
Eric Pardyjak ◽  
Alexandre Paci ◽  
...  

Mountainous areas require appropriate measurement strategies to cover the full spectrum of details concerning the energy exchange at the Earth’s surface and to capture the spatiotemporal distribution of atmospheric dynamic and thermodynamic fields over them. This includes the range from turbulence to mesoscale processes and its interaction. The surface energy balance needs appropriate measurement strategies as well. In this paper, we present an overview of important experiments performed over mountainous terrain and summarize the available techniques for flow and energy measurements in complex terrain. The description includes ground-based and airborne in situ observations as well as ground-based and airborne remote sensing (passive and active) observations. Emphasis is placed on systems which retrieve spatiotemporal information on mesoscale and smaller scales, fitting mountainous terrain research needs. Finally, we conclude with a short list summarizing challenges and gaps one faces when dealing with measurements over complex terrain.


2009 ◽  
Vol 9 (4) ◽  
pp. 17465-17494
Author(s):  
D. B. Atkinson ◽  
P. Massoli ◽  
N. T. O'Neill ◽  
P. K. Quinn ◽  
S. Brooks ◽  
...  

Abstract. During the 2006 Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS 2006), the optical, chemical and microphysical properties of atmospheric aerosols were measured on multiple mobile platforms and at ground based stations. In situ measurements of the aerosol light extinction coefficient (σep) were performed by two multi-wavelength cavity ring-down (CRD) instruments, one located on board the NOAA R/V Ronald H. Brown (RHB) and the other located at the University of Houston, Moody Tower (UHMT). An AERONET sunphotometer was also located at the UHMT to measure the columnar aerosol optical depth (AOD). The σep data were used to extract the extinction Ångström exponent (åep), a measure of the wavelength dependence of σep. There was general agreement between the åep (and to a lesser degree σep measurements by the two spatially separated CRD instruments during multi-day periods, suggesting a regional scale consistency of the sampled aerosols. Two spectral models are applied to the σep and AOD data to extract the fine mode fraction of extinction (η) and the fine mode effective radius (Reff f). These two parameters are robust measures of the fine mode contribution to total extinction and the fine mode size distribution respectively. The results of the analysis are compared to Reff f values extracted using AERONET V2 retrievals and calculated from in situ particle size measurements on the RHB and at UHMT. During a time period when fine mode aerosols dominated the extinction over a large area extending from Houston/Galveston Bay and out into the Gulf of Mexico, the various methods for obtaining Reff f agree qualitatively (showing the same temporal trend) and quantitatively (pooled standard deviation=28 nm).


Sign in / Sign up

Export Citation Format

Share Document