scholarly journals Analysis of Deformation and Erosion during CME Evolution

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 314
Author(s):  
Skralan Hosteaux ◽  
Emmanuel Chané ◽  
Stefaan Poedts

Magnetised coronal mass ejections (CMEs) are quite substantially deformed during their journey form the Sun to the Earth. Moreover, the interaction of their internal magnetic field with the magnetic field of the ambient solar wind can cause deflection and erosion of their mass and magnetic flux. We here analyse axisymmetric (2.5D) MHD simulations of normal and inverse CME, i.e., with the opposite or same polarity as the background solar wind, and attempt to quantify the erosion and the different forces that operate on the CMEs during their evolution. By analysing the forces, it was found that an increase of the background wind density results in a stronger plasma pressure gradient in the sheath that decelerates the magnetic cloud more. This in turn leads to an increase of the magnetic pressure gradient between the centre of the magnetic cloud and the separatrix, causing a further deceleration. Regardless of polarity, the current sheet that forms in our model between the rear of the CME and the closed field lines of the helmet streamer, results in magnetic field lines being stripped from the magnetic cloud. It is also found that slow normal CMEs experience the same amount of erosion, regardless of the background wind density. Moreover, as the initial velocity increases, so does the influence of the wind density on the erosion. We found that increasing the CME speed leads to a higher overall erosion due to stronger magnetic reconnection. For inverse CMEs, field lines are not stripped away but added to the magnetic cloud, leading to about twice as much magnetic flux at 1 AU than normal CMEs with the same initial flux.

2020 ◽  
Author(s):  
Lihui Chai ◽  
James Slavin ◽  
Yong Wei ◽  
Weixing Wan ◽  
Charlie F. Bowers ◽  
...  

<p>The induced magnetotails on Mars and Venus are considered to arise through the interplanetary magnetic field (IMF) draping around the planet and the solar wind deceleration due to the mass loading effect. They have very similar structures as that on Earth, two magnetic lobes of opposite radial magnetic fields and a plasma sheet in between. However, the orientation and geometry of the induced magnetotails are controlled by the IMF, not the planetary intrinsic magnetic field. In this study, we present another characteristic of the induced magnetotails on Mars and Venus with the observations of MAVEN and Venus Express. It is found that the magnetic flux in the induced magnetotails on Mars and Venus are inhomogeneous. There is more magnetic flux in the +E hemisphere than -E hemisphere. The magnetic flux is observed to transport gradually from the +E hemisphere to the -E hemisphere along the magnetotail. The magnetotail magnetic flux transport seems to be faster on Mars than that at Venus. Based on these observations, we suggest that the finite gyro-radius effect of the planetary ions that are picked up by the solar wind is responsible to the magnetic flux inhomogeneity and transport in the induced magnetotails. The role of the magnetic pressure gradient in the magnetotail will be discussed.</p>


2019 ◽  
Vol 632 ◽  
pp. A89 ◽  
Author(s):  
S. Hosteaux ◽  
E. Chané ◽  
S. Poedts

Context. The evolution of magnetised coronal mass ejections (CMEs) and their interaction with the background solar wind leading to deflection, deformation, and erosion is still largely unclear as there is very little observational data available. Even so, this evolution is very important for the geo-effectiveness of CMEs. Aims. We investigate the evolution of both normal and inverse CMEs ejected at different initial velocities, and observe the effect of the background wind density and their magnetic polarity on their evolution up to 1 AU. Methods. We performed 2.5D (axisymmetric) simulations by solving the magnetohydrodynamic equations on a radially stretched grid, employing a block-based adaptive mesh refinement scheme based on a density threshold to achieve high resolution following the evolution of the magnetic clouds and the leading bow shocks. All the simulations discussed in the present paper were performed using the same initial grid and numerical methods. Results. The polarity of the internal magnetic field of the CME has a substantial effect on its propagation velocity and on its deformation and erosion during its evolution towards Earth. We quantified the effects of the polarity of the internal magnetic field of the CMEs and of the density of the background solar wind on the arrival times of the shock front and the magnetic cloud. We determined the positions and propagation velocities of the magnetic clouds and thus also the stand-off distance of the leading shock fronts (i.e. the thickness of the magnetic sheath region) and the deformation and erosion of the magnetic clouds during their evolution from the Sun to the Earth. Inverse CMEs were found to be faster than normal CMEs ejected in the same initial conditions, but with smaller stand-off distances. They also have a higher magnetic cloud length, opening angle, and mass. Synthetic satellite time series showed that the shock magnitude is not affected by the polarity of the CME. However, the density peak of the magnetic cloud is dependent on the polarity and, in case of inverse CMEs, also on the background wind density. The magnitude of the z-component of the magnetic field was not influenced by either the polarity or the wind density.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hengqiang Feng ◽  
Yan Zhao ◽  
Jiemin Wang ◽  
Qiang Liu ◽  
Guoqing Zhao

During solar eruptions, many closed magnetic flux ropes are ejected into interplanetary space, which contribute to the heliospheric magnetic field and have important space weather effect because of their coherent magnetic field. Therefore, understanding the evolution of these closed flux ropes in the interplanetary space is important. In this paper, we examined all the magnetic and plasma data measured in 1997 by the Wind spacecraft and identified 621 reconnection exhausts. Of the 621 reconnection events, 31 were observed at the boundaries of magnetic flux ropes and were thought to cause the opening or disconnection magnetic field lines of the adjacent ropes. Of the 31 magnetic reconnection events, 29 were interchange reconnections and the closed field lines of these related flux ropes were opened by them. Only 2 of the 31 magnetic reconnection events disconnected the opened field lines of the original flux ropes. These observations indicate that interchange reconnection and disconnection may be two important mechanisms changing the magnetic topology of the magnetic flux ropes during their propagation during the interplanetary space.


2005 ◽  
Vol 23 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
S. E. Milan

Abstract. Dayside UV emissions in Saturn's polar ionosphere have been suggested to be the first observational evidence of the kronian "cusp" (Gérard et al., 2004). The emission has two distinct states. The first is a bright arc-like feature located in the pre-noon sector, and the second is a more diffuse "spot" of aurora which lies poleward of the general location of the main auroral oval, which may be related to different upstream interplanetary magnetic field (IMF) orientations. Here we take up the suggestion that these emissions correspond to the cusp. However, direct precipitation of electrons in the cusp regions is not capable of producing significant UV aurora. We have therefore investigated the possibility that the observed UV emissions are associated with reconnection occurring at the dayside magnetopause, possibly pulsed, akin to flux transfer events seen at the Earth. We devise a conceptual model of pulsed reconnection at the low-latitude dayside magnetopause for the case of northwards IMF which will give rise to pulsed twin-vortical flows in the magnetosphere and ionosphere in the vicinity of the open-closed field-line boundary, and hence to bi-polar field-aligned currents centred in the vortical flows. During intervals of high-latitude lobe reconnection for southward IMF, we also expect to have pulsed twin-vortical flows and corresponding bi-polar field-aligned currents. The vortical flows in this case, however, are displaced poleward of the open-closed field line boundary, and are reversed in sense, such that the field-aligned currents are also reversed. For both cases of northward and southward IMF we have also for the first time included the effects associated with the IMF By effect. We also include the modulation introduced by the structured nature of the solar wind and IMF at Saturn's orbit by developing "slow" and "fast" flow models corresponding to intermediate and high strength IMF respectively. We then consider the conditions under which the plasma populations appropriate to either sub-solar reconnection or high-latitude lobe reconnection can carry the currents indicated. We have estimated the field-aligned voltages required, the resulting precipitating particle energy fluxes, and the consequent auroral output. Overall our model of pulsed reconnection under conditions of northwards and southwards IMF, and for varying orientations of IMF By, is found to produce a range of UV emission intensities and geometries which is in good agreement with the data presented by Gérard et al. (2004). The recent HST-Cassini solar wind campaign provides a unique opportunity to test the theoretical ideas presented here.


2003 ◽  
Vol 21 (8) ◽  
pp. 1709-1722 ◽  
Author(s):  
E. J. Bunce ◽  
S. W. H. Cowley ◽  
J. A. Wild

Abstract. We calculate the azimuthal magnetic fields expected to be present in Saturn’s magnetosphere associated with two physical effects, and compare them with the fields observed during the flybys of the two Voyager spacecraft. The first effect is associated with the magnetosphere-ionosphere coupling currents which result from the sub-corotation of the magnetospheric plasma. This is calculated from empirical models of the plasma flow and magnetic field based on Voyager data, with the effective Pedersen conductivity of Saturn’s ionosphere being treated as an essentially free parameter. This mechanism results in a ‘lagging’ field configuration at all local times. The second effect is due to the day-night asymmetric confinement of the magnetosphere by the solar wind (i.e. the magnetopause and tail current system), which we have estimated empirically by scaling a model of the Earth’s magnetosphere to Saturn. This effect produces ‘leading’ fields in the dusk magnetosphere, and ‘lagging’ fields at dawn. Our results show that the azimuthal fields observed in the inner regions can be reasonably well accounted for by plasma sub-corotation, given a value of the effective ionospheric Pedersen conductivity of ~ 1–2 mho. This statement applies to field lines mapping to the equator within ~ 8 RS (1 RS is taken to be 60 330 km) of the planet on the dayside inbound passes, where the plasma distribution is dominated by a thin equatorial heavy-ion plasma sheet, and to field lines mapping to the equator within ~ 15 RS on the dawn side outbound passes. The contributions of the magnetopause-tail currents are estimated to be much smaller than the observed fields in these regions. If, however, we assume that the azimuthal fields observed in these regions are not due to sub-corotation but to some other process, then the above effective conductivities define an upper limit, such that values above ~ 2 mho can definitely be ruled out. Outside of this inner region the spacecraft observed both ‘lagging’ and ‘leading’ fields in the post-noon dayside magnetosphere during the inbound passes, with ‘leading’ fields being observed both adjacent to the magnetopause and in the ring current region, and ‘lagging’ fields being observed between. The observed ‘lagging’ fields are consistent in magnitude with the sub-corotation effect with an effective ionospheric conductivity of ~ 1–2 mho, while the ‘leading’ fields are considerably larger than those estimated for the magnetopause-tail currents, and appear to be indicative of the presence of another dynamical process. No ‘leading’ fields were observed outside the inner region on the dawn side outbound passes, with the azimuthal fields first falling below those expected for sub-corotation, before increasing, to exceed these values at radial distances beyond ~ 15–20 RS , where the effect of the magnetopause-tail currents becomes significant. As a by-product, our investigation also indicates that modification and scaling of terrestrial magnetic field models may represent a useful approach to modelling the three-dimensional magnetic field at Saturn.Key words. Magnetospheric physics (current systems; magnetosphere-ionosphere interactions; solar wind-magnetosphere interactions)


2002 ◽  
Vol 20 (3) ◽  
pp. 311-320 ◽  
Author(s):  
J. Mĕrka ◽  
J. Šafránková ◽  
Z. Nĕmeček

Abstract. The width of the cusp region is an indicator of the strength of the merging process and the degree of opening of the magnetosphere. During three years, the Magion-4 satellite, as part of the Interball project, has collected a unique data set of cusp-like plasma observations in middle and high altitudes. For a comparison of high- and low-altitude cusp determination, we map our observations of cusp-like plasma along the magnetic field lines down to the Earth’s surface. We use the Tsyganenko and Stern 1996 model of the magnetospheric magnetic field for the mapping, taking actual solar wind and IMF parameters from the Wind observations. The footprint positions show substantial latitudinal dependence on the dipole tilt angle. We fit this dependence with a linear function and subtract this function from observed cusp position. This process allows us to study both statistical width and location of the inspected region as a function of the solar wind and IMF parameters. Our processing of the Magion-4 measurements shows that high-altitude regions occupied by the cusp-like plasma (cusp and cleft) are projected onto a much broader area (in magnetic local time as well as in a latitude) than that determined in low altitudes. The trends of the shift of the cusp position with changes in the IMF direction established by low-altitude observations have been confirmed.Key words. Magnetospheric physics (magnetopause, cusp and boundary layer; solar wind – magnetosphere interactions)


Sign in / Sign up

Export Citation Format

Share Document