scholarly journals Subsurface Geological Characterization of the Late Neogene–Quaternary Argive Basin, Peloponnese, Greece Using Transient Electromagnetic Data and Vintage Stratigraphic Logs

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 317
Author(s):  
Hector R. Hinojosa-Prieto ◽  
Pantelis Soupios ◽  
Pavel Barsukov

The onshore and offshore clastic deposits of the Argive Basin and the Argolic Gulf, respectively, in Peloponnese, Greece, form a Late Neogene–Quaternary half-graben that connects with the Aegean Sea. The onshore Late Neogene–Quaternary sequence, comprised of chaotically intercalated cohesive and granular clastic deposits, is in angular unconformity with bedrock comprised of Triassic–Upper Cretaceous strongly-weathered, highly-fractured karstic limestones thrusted against Paleogene flysch deposits. While the surface geology of the Argive Basin is well-known, the subsurface geology remains both poorly mapped and understood. We utilized transient electromagnetic (TEM) soundings coupled with 185 vintage stratigraphic logs, current surface geology knowledge, and insights from available geophysical surveys to characterize the subsurface conditions of this sedimentary basin. We estimated the thickness of the young deposits (the depth to bedrock) and detected potential subsurface tectonic structures. The TEM-FAST 48HPC data acquisition system with integrated inversion and visualization software package was used with a single-loop dimension of 50 m × 50 m to collect a total of 329 TEM soundings at 151 stations scattered throughout the basin. The TEM station spacing varied from 200 to 750 m allowing the mapping of 80 km2. The total depth of investigation with the inverted TEM data and the lithology logs was 130 m and 183 m, respectively. The joint interpretation produced several quasi-two-dimensional electrical resistivity profiles that traverse the sedimentary basin in various azimuths and depth slices of average electrical resistivity covering the basin. The depth slices and the vintage stratigraphic logs revealed an uneven bedrock topography overlain by an irregularly thick (over 180 m) Late Neogene–Quaternary heterolithic sediment cover.

2012 ◽  
Vol 9 (8) ◽  
pp. 9661-9686 ◽  
Author(s):  
A. Pryet ◽  
N. d'Ozouville ◽  
S. Violette ◽  
B. Deffontaines ◽  
E. Auken

Abstract. Many volcanic islands face freshwater stress and the situation may worsen with climate change and sea level rise. In this context, an optimum management of freshwater resources becomes crucial, but is often impeded by the lack of data. With the aim of investigating the hydrogeological settings of Southern San Cristóbal Island (Galapagos), we conducted an helicopter-borne, transient electromagnetic survey with the SkyTEM system. It provided unprecedented insights in the 3-D resistivity structure of this extinct basaltic shield. Combined with remote sensing and fieldwork, it allowed the definition of the first hydrogeological conceptual model of the island. Springs are fed by a series of perched aquifers overlying a regional basal aquifer subject to seawater intrusion. Dykes, evidenced by alignments of eruptive cones at the surface, correspond to sharp sub-vertical contrasts in resistivity in the subsurface, and impound groundwater in a summit channel. Combined with geomorphological observations, airborne electromagnetics is shown to be a useful tool for hydrogeological exploratory studies in complex, poorly known environments. It allows optimal development of land-based geophysical surveys and drilling campaigns.


2017 ◽  
Vol 43 (2) ◽  
pp. 579
Author(s):  
S. Bellas ◽  
H. Keupp

Most of the basal Neogene sediments of Crete Island (South Aegean Sea) were unconformably deposited during synsedimentary extensional tectonics and subsequent transgression on the basement. This work mainly focuses on the marine stratigraphy of south central Crete and specifically on the sedimentary deposits of the Gortys subbasin-area located in the basin of Messara. Four selected profiles north of Gortys ancient ruins (Heraklion Province) are lithostratigraphically presented. Profiles Gortys-1 and -2 (combined to one: 1+2) represent the basal Neogene deposits (older strata-commence of sedimentation) and are interpreted as of fluviatile to lagoonal origin, while profiles Gortys-4 and - 4a are considered the younger, marine development of the Gortys subbasin. Between profiles –4 and –4a are developed evaporites of the Messinian Salinity Crisis (MSC). Profiles are biostratigraphically studied and correlated on the basis of either identified macrofossils or calcareous and siliceous nannofossils. The recorded assemblages range in age from Serravallian-Tortonian to Messinian and Zanclean respectively. The good preservation and abundance of the fossil phytoplankton establishes a well-constrained biostratigraphic framework, which will further contribute to the understanding of the evolution of the Messara sedimentary basin.


2012 ◽  
Vol 16 (12) ◽  
pp. 4571-4579 ◽  
Author(s):  
A. Pryet ◽  
N. d'Ozouville ◽  
S. Violette ◽  
B. Deffontaines ◽  
E. Auken

Abstract. Many volcanic islands face freshwater stress and the situation may worsen with climate change and sea level rise. In this context, an optimum management of freshwater resources becomes crucial, but is often impeded by the lack of data. With the aim of investigating the hydrogeological settings of southern San Cristóbal Island (Galapagos), we conducted a helicopter-borne, transient electromagnetic survey with the SkyTEM system. It provided unprecedented insights into the 3-D resistivity structure of this extinct basaltic shield. Combined with remote sensing and fieldwork, it allowed the definition of the first hydrogeological conceptual model of the island. Springs are fed by a series of perched aquifers overlying a regional basal aquifer subject to seawater intrusion. Dykes, evidenced by alignments of eruptive cones at the surface, correspond to sharp sub-vertical contrasts in resistivity in the subsurface, and impound groundwater in a summit channel. Combined with geomorphological observations, airborne electromagnetics are shown to be a useful for hydrogeological exploratory studies in complex, poorly known environments. They allow optimal development of land-based geophysical surveys and drilling campaigns.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Luciana Orlando

The paper emphasizes the advantages of employing multiple data techniques—geology, GPS, surveys of cracking, boreholes, seismic refraction and electrical resistivity tomography—to image the shallow stratigraphy and hypothesize the cause of instability of an urban area. The study is focused on the joint interpretation of the crack pattern, topographic monitoring and the features of the underground, to define the area affected by instability and the direction of ground motion with the objective to advance a hypothesis on the cause of the instability of the area and to depict the main features. Borehole stratigraphies for a univocal interpretation of the lithology of electrical and seismic data and electrical resistivity tomography to constrain the interpretation of the lateral velocity variations and thickness of seismic bedrock were used. The geophysical surveys reveals to be complementary in the depicting of underground features. The study is approached at small and medium scale.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 102
Author(s):  
Paraskevi Nomikou ◽  
Dimitris Evangelidis ◽  
Dimitrios Papanikolaou ◽  
Danai Lampridou ◽  
Dimitris Litsas ◽  
...  

On 30 October 2020, a strong earthquake of magnitude 7.0 occurred north of Samos Island at the Eastern Aegean Sea, whose earthquake mechanism corresponds to an E-W normal fault dipping to the north. During the aftershock period in December 2020, a hydrographic survey off the northern coastal margin of Samos Island was conducted onboard R/V NAFTILOS. The result was a detailed bathymetric map with 15 m grid interval and 50 m isobaths and a morphological slope map. The morphotectonic analysis showed the E-W fault zone running along the coastal zone with 30–50° of slope, forming a half-graben structure. Numerous landslides and canyons trending N-S, transversal to the main direction of the Samos coastline, are observed between 600 and 100 m water depth. The ENE-WSW oriented western Samos coastline forms the SE margin of the neighboring deeper Ikaria Basin. A hummocky relief was detected at the eastern margin of Samos Basin probably representing volcanic rocks. The active tectonics characterized by N-S extension is very different from the Neogene tectonics of Samos Island characterized by NE-SW compression. The mainshock and most of the aftershocks of the October 2020 seismic activity occur on the prolongation of the north dipping E-W fault zone at about 12 km depth.


Data in Brief ◽  
2020 ◽  
Vol 30 ◽  
pp. 105491 ◽  
Author(s):  
Hariri Arifin ◽  
John Kayode ◽  
Khairul Arifin ◽  
Zuhar Zahir ◽  
Manan Abdullah ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
Allan Haas ◽  
Dale F. Rucker ◽  
Marc T. Levitt

Industrialized sites pose challenges for conducting electrical resistivity geophysical surveys, as the sites typically contain metallic infrastructure that can mask electrolytic-based soil and groundwater contamination. The Hanford site in eastern Washington State, USA, is an industrialized site with underground storage tanks, piping networks, steel fencing, and other potentially interfering infrastructure that could inhibit the effectiveness of electrical resistivity tomography (ERT) to map historical and monitor current waste releases. The underground storage tanks are the largest contributor by volume to subsurface infrastructure and can be classified as reinforced concrete structures with an internal steel liner. Directly measuring the effective value for the electrical resistivity of the tank, i.e., the combination of individual components that comprise the tank’s shell, is not reasonably possible because they are buried and dangerously radioactive. Therefore, we indirectly assess the general resistivity of the tanks and surrounding infrastructure by developing synthetic ERT models with a parametric forward modeling study using a wide range of resistivity values from 1×10−6 to 1×104 ohm-m, which are equivalent to steel and dry rock, respectively. The synthetic models used the long-electrode ERT method (LE-ERT), whereby steel cased metallic wells surrounding the tanks are used as electrodes. The patterns and values of the synthetic tomographic models were then compared to LE-ERT field data from the AX tank farm at the Hanford site. This indirect method of assessing the effective resistivity revealed that the reinforced concrete tanks are electrically resistive and the accompanying piping infrastructure has little influence on the overall resistivity distribution when using electrically based geophysical methods for characterizing or monitoring waste releases. Our findings are consistent with nondestructive testing literature that also shows reinforced concrete to be generally resistive.


2021 ◽  
Author(s):  
Uwe Morgenstern ◽  
Zara Rawlinson

<p>Geologic data to provide information on the functioning of aquifers is often scars. For the aquifers underlying the Heretaunga Plains, Hawkes Bay, one of New Zealand’s most important groundwater systems, we used groundwater age (tritium, SF6, 14C) to inform the geologic model and to provide information on groundwater flow through alternating strata of permeable river gravel beds and fine impermeable beds that form an interconnected unconfined–confined aquifer system with complex groundwater flow processes.</p><p>The aquifers are a result of geological processes responding to climate change cycles from cold glacial when sea level was more than 100m below present sea level, to warm interglacial periods with sea level similar to present day. Glacial climate strata are river gravel, sand and silt deposits and include the artesian aquifers. The interglacial strata form the aquicludes and are marine sand, silt, and clay deposits with interbedded estuarine, swamp and coastal fluvial silt, clay, peat and gravel deposits.</p><p>We have re-visited tracer data sampled during the drilling of multi-level observation well in the early 1990s, and collected new samples from these multi-level bores in order to understand in 3D the groundwater recharge sources, groundwater recharge and flow rates, connection to the rivers, and potential groundwater discharge out to sea. Consistently young water (c. 25 years) at depth greater than 100m indicates preferential flow paths, likely related to paleo-river channels. The flow pattern obtained from the water tracer data improves the geologic information from the drill-holes, and fits with information from recent airborne transient electromagnetic (SkyTEM) geophysical surveys.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. T299-T311 ◽  
Author(s):  
Sarah G. R. Devriese ◽  
Kristofer Davis ◽  
Douglas W. Oldenburg

The Tli Kwi Cho (TKC) kimberlite complex contains two pipes, called DO-27 and DO-18, which were discovered during the Canadian diamond exploration rush in the 1990s. The complex has been used as a testbed for ground and airborne geophysics, and an abundance of data currently exist over the area. We have evaluated the historical and geologic background of the complex, the physical properties of interest for kimberlite exploration, and the geophysical surveys. We have carried out 3D inversion and joint interpretation of the potential field data. The magnetic data indicate high susceptibility at DO-18, and the magnetic inversion maps the horizontal extent of the pipe. DO-27 is more complicated. The northern part is highly magnetic and is contaminated with remanent magnetization; other parts of DO-27 have a low susceptibility. Low densities, obtained from the gravity and gravity gradiometry data, map the horizontal extents of DO-27 and DO-18. We combine the 3D density contrast and susceptibility models into a single geologic model that identifies three distinct kimberlite rock units that agree with drilling data. In further research, our density and magnetic susceptibility models are combined with information from electromagnetic data to provide a multigeophysical interpretation of the TKC kimberlite complex.


Sign in / Sign up

Export Citation Format

Share Document