scholarly journals Automatic Information Exchange in the Early Rescue Chain Using the International Standard Accident Number (ISAN)

Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 996
Author(s):  
Mostafa Haghi ◽  
Ramon Barakat ◽  
Nicolai Spicher ◽  
Christian Heinrich ◽  
Justin Jageniak ◽  
...  

Thus far, emergency calls are answered by human operators who interview the calling person in order to obtain all relevant information. In the near future—based on the Internet of (Medical) Things (IoT, IoMT)—accidents, emergencies, or adverse health events will be reported automatically by smart homes, smart vehicles, or smart wearables, without any human in the loop. Several parties are involved in this communication: the alerting system, the rescue service (responding system), and the emergency department in the hospital (curing system). In many countries, these parties use isolated information and communication technology (ICT) systems. Previously, the International Standard Accident Number (ISAN) has been proposed to securely link the data in these systems. In this work, we propose an ISAN-based communication platform that allows semantically interoperable information exchange. Our aims are threefold: (i) to enable data exchange between the isolated systems, (ii) to avoid data misinterpretation, and (iii) to integrate additional data sources. The suggested platform is composed of an alerting, responding, and curing system manager, a workflow manager, and a communication manager. First, the ICT systems of all parties in the early rescue chain register with their according system manager, which tracks the keep-alive. In case of emergency, the alerting system sends an ISAN to the platform. The responsible rescue services and hospitals are determined and interconnected for platform-based communication. Next to the conceptual design of the platform, we evaluate a proof-of-concept implementation according to (1) the registration, (2) channel establishment, (3) data encryption, (4) event alert, and (5) information exchange. Our concept meets the requirements for scalability, error handling, and information security. In the future, it will be used to implement a virtual accident registry.

2020 ◽  
Vol 9 (4) ◽  
pp. 394-409
Author(s):  
Saikiran Gopalakrishnan ◽  
Nathan W. Hartman ◽  
Michael D. Sangid

AbstractThe digital transformation of manufacturing requires digitalization, including automatic and efficient data exchange. Model-based definitions (MBDs) capture digital product definitions, in order to eliminate error-prone information exchange associated with traditional paper-based drawings and to provide contextual information through additional metadata. The flow of MBDs extends throughout the product lifecycle (including the design, analysis, manufacturing, in service life, and retirement stages) and can be extended beyond the typical geometry and tolerance information within a computer-aided design. In this paper, the MBDs are extended to include materials information, via dynamic linkages. To this end, a model-based feature information network (MFIN) is created to provide a comprehensive framework that facilitates storing, updating, searching, and retrieving of relevant information across a product’s lifecycle. The use case of a damage tolerant analysis for a compressor bladed-disk (blisk) is demonstrated, in Ti-6Al-4V blade(s) linear friction welded to the Ti-6Al-4V disk, creating well-defined regions exhibiting grain refinement and high residuals stresses. By capturing the location-specific microstructure and residual stress values at the weld regions, this information is accessed within the MFIN and used for downstream damage tolerant analysis. The introduction of the MFIN framework facilitates access to dynamically evolving data for use within physics-based models (resulting in the opportunity to reduce uncertainty in subsequent prognosis analyses), thereby enabling a digital twin description of the component or system.


2014 ◽  
Vol 602-605 ◽  
pp. 2807-2810
Author(s):  
Quan Gang Wen

To protect the security of critical data and application system, generally, many companies or departments use a parallel way of intranet and internet. Because every kind of security technology has its limitations, traditional security products such as firewall, VPN, data encryption, intrusion detection and network vulnerability scanning can not completely solve various security problems in information exchange between different networks. It is not able to meet all the security needs of critical networks and security data with the general products only. The way of data exchange of most of the existing products of "GAP" is mainly logic isolation .This paper describes a design and implementation of a hot switch circuit card in way of physical isolation .The data exchange mode of this circuit card is a half-duplex which can physically completely isolate intranet and internet. Through functional test and performance test, we can draw a conclusion that the circuit card can effectively achieve our demand of data exchange between different networks.


Author(s):  
Shuying Wang ◽  
Jizi Li ◽  
Shihua Ma

In this paper, by analyzing the characteristics of data exchange process of SaaS-based collaboration supporting platform for industrial chain, a dynamic and secure business data exchange model for the platform is established. On this basis, methods for business data automatic obtain and format conversion, client authentication based on encryption lock and SOAP extension, business data encryption based on public key of the platform, and instant key created by client is discussed. The implementation of these methods is studied based on a .NET environment. Furthermore, the dynamic and secure business data exchange model is used in the SaaS platform of the automotive industry chain and SaaS platform of the injection industry chain, as it meets the multi-source and heterogeneous information exchange requirements.


Author(s):  
Nicolai Spicher ◽  
Ramon Barakat ◽  
Ju Wang ◽  
Mostafa Haghi ◽  
Justin Jagieniak ◽  
...  

Abstract Background The rapid dissemination of smart devices within the internet of things (IoT) is developing toward automatic emergency alerts which are transmitted from machine to machine without human interaction. However, apart from individual projects concentrating on single types of accidents, there is no general methodology of connecting the standalone information and communication technology (ICT) systems involved in an accident: systems for alerting (e.g., smart home/car/wearable), systems in the responding stage (e.g., ambulance), and in the curing stage (e.g., hospital). Objectives We define the International Standard Accident Number (ISAN) as a unique token for interconnecting these ICT systems and to provide embedded data describing the circumstances of an accident (time, position, and identifier of the alerting system). Materials and Methods Based on the characteristics of processes and ICT systems in emergency care, we derive technological, syntactic, and semantic requirements for the ISAN, and we analyze existing standards to be incorporated in the ISAN specification. Results We choose a set of formats for describing the embedded data and give rules for their combination to generate an ISAN. It is a compact alphanumeric representation that is generated easily by the alerting system. We demonstrate generation, conversion, analysis, and visualization via representational state transfer (REST) services. Although ISAN targets machine-to-machine communication, we give examples of graphical user interfaces. Conclusion Created either locally by the alerting IoT system or remotely using our RESTful service, the ISAN is a simple and flexible token that enables technological, syntactic, and semantic interoperability between all ICT systems in emergency care.


Author(s):  
Shuying Wang ◽  
Jizi Li ◽  
Shihua Ma

In this paper, by analyzing the characteristics of data exchange process of SaaS-based collaboration supporting platform for industrial chain, a dynamic and secure business data exchange model for the platform is established. On this basis, methods for business data automatic obtain and format conversion, client authentication based on encryption lock and SOAP extension, business data encryption based on public key of the platform, and instant key created by client is discussed. The implementation of these methods is studied based on a .NET environment. Furthermore, the dynamic and secure business data exchange model is used in the SaaS platform of the automotive industry chain and SaaS platform of the injection industry chain, as it meets the multi-source and heterogeneous information exchange requirements.


2021 ◽  
Vol 27 (6) ◽  
pp. 520-532
Author(s):  
Ivett E. Ortega-Mora ◽  
Ulises Caballero-Sánchez ◽  
Talía V. Román-López ◽  
Cintia B. Rosas-Escobar ◽  
Mónica Méndez-Díaz ◽  
...  

AbstractAttention allows us to select relevant information from the background. Although several studies have described that cannabis use induces deleterious effects on attention, it remains unclear if cannabis dependence affects the attention network systems differently.Objectives:To evaluate whether customary consumption of cannabis or cannabis dependence impacts the alerting, orienting, and executive control systems in young adults; to find out whether it is related to tobacco or alcohol dependence and if cannabis use characteristics are associated with the attention network systems.Method:One-hundred and fifty-four healthy adults and 102 cannabis users performed the Attention Network Test (ANT) to evaluate the alerting, orienting, and executive control systems.Results:Cannabis use enhanced the alerting system but decreased the orienting system. Moreover, those effects seem to be associated with cannabis dependence. Out of all the cannabis-using variables, only the age of onset of cannabis use significantly predicted the efficiency of the orienting and executive control systems.Conclusion:Cannabis dependence favors tonic alertness but reduces selective attention ability; earlier use of cannabis worsens the efficiency of selective attention and resolution of conflicts.


2021 ◽  
Vol 28 (1) ◽  
pp. e100241
Author(s):  
Job Nyangena ◽  
Rohini Rajgopal ◽  
Elizabeth Adhiambo Ombech ◽  
Enock Oloo ◽  
Humphrey Luchetu ◽  
...  

BackgroundThe use of digital technology in healthcare promises to improve quality of care and reduce costs over time. This promise will be difficult to attain without interoperability: facilitating seamless health information exchange between the deployed digital health information systems (HIS).ObjectiveTo determine the maturity readiness of the interoperability capacity of Kenya’s HIS.MethodsWe used the HIS Interoperability Maturity Toolkit, developed by MEASURE Evaluation and the Health Data Collaborative’s Digital Health and Interoperability Working Group. The assessment was undertaken by eHealth stakeholder representatives primarily from the Ministry of Health’s Digital Health Technical Working Group. The toolkit focused on three major domains: leadership and governance, human resources and technology.ResultsMost domains are at the lowest two levels of maturity: nascent or emerging. At the nascent level, HIS activities happen by chance or represent isolated, ad hoc efforts. An emerging maturity level characterises a system with defined HIS processes and structures. However, such processes are not systematically documented and lack ongoing monitoring mechanisms.ConclusionNone of the domains had a maturity level greater than level 2 (emerging). The subdomains of governance structures for HIS, defined national enterprise architecture for HIS, defined technical standards for data exchange, nationwide communication network infrastructure, and capacity for operations and maintenance of hardware attained higher maturity levels. These findings are similar to those from interoperability maturity assessments done in Ghana and Uganda.


2017 ◽  
Vol 145 (11) ◽  
pp. 2221-2230 ◽  
Author(s):  
T. PÄRN ◽  
V. DAHL ◽  
T. LIENEMANN ◽  
J. PEREVOSČIKOVS ◽  
B. DE JONG

SUMMARYIn April 2015, Finnish public health authorities alerted European Union member states of a possible multi-country Salmonella enteritidis outbreak linked to an international youth ice-hockey tournament in Latvia. The European Centre for Disease Prevention and Control (ECDC), Finnish and Latvian authorities initiated an outbreak investigation to identify the source. The investigation included a description of the outbreak, retrospective cohort study, microbiological investigation and trace-back. We identified 154 suspected and 96 confirmed cases from seven countries. Consuming Bolognese sauce and salad at a specific event arena significantly increased the risk of illness. Isolates from Finnish, Swedish and Norwegian cases had an identical multiple-locus variable-number of tandem repeats analysis-profile (3-10-6-4-1). Breaches in hygiene and food storing practices in the specific arena's kitchen allowing for cross-contamination were identified. Riga Cup participants were recommended to follow good hand hygiene and consume only freshly cooked foods. This investigation demonstrated that the use of ECDC's Epidemic Intelligence Information System for Food- and Waterborne Diseases and Zoonoses platform was essential to progress the investigation by facilitating information exchange between countries. Cross-border data sharing to perform whole genome sequencing gave relevant information regarding the source of the outbreak.


2016 ◽  
Vol 49 (1) ◽  
pp. 302-310 ◽  
Author(s):  
Michael Kachala ◽  
John Westbrook ◽  
Dmitri Svergun

Recent advances in small-angle scattering (SAS) experimental facilities and data analysis methods have prompted a dramatic increase in the number of users and of projects conducted, causing an upsurge in the number of objects studied, experimental data available and structural models generated. To organize the data and models and make them accessible to the community, the Task Forces on SAS and hybrid methods for the International Union of Crystallography and the Worldwide Protein Data Bank envisage developing a federated approach to SAS data and model archiving. Within the framework of this approach, the existing databases may exchange information and provide independent but synchronized entries to users. At present, ways of exchanging information between the various SAS databases are not established, leading to possible duplication and incompatibility of entries, and limiting the opportunities for data-driven research for SAS users. In this work, a solution is developed to resolve these issues and provide a universal exchange format for the community, based on the use of the widely adopted crystallographic information framework (CIF). The previous version of the sasCIF format, implemented as an extension of the core CIF dictionary, has been available since 2000 to facilitate SAS data exchange between laboratories. The sasCIF format has now been extended to describe comprehensively the necessary experimental information, results and models, including relevant metadata for SAS data analysis and for deposition into a database. Processing tools for these files (sasCIFtools) have been developed, and these are available both as standalone open-source programs and integrated into the SAS Biological Data Bank, allowing the export and import of data entries as sasCIF files. Software modules to save the relevant information directly from beamline data-processing pipelines in sasCIF format are also developed. This update of sasCIF and the relevant tools are an important step in the standardization of the way SAS data are presented and exchanged, to make the results easily accessible to users and to promote further the application of SAS in the structural biology community.


Sign in / Sign up

Export Citation Format

Share Document