scholarly journals Geostatistical Distribution and Contamination Status of Heavy Metals in the Sediment of Perak River, Malaysia

Hydrology ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 30 ◽  
Author(s):  
Mohammed Abdus Salam ◽  
Shujit Chandra Paul ◽  
Farrah Izzaty Shaari ◽  
Aweng Eh Rak ◽  
Rozita Binti Ahmad ◽  
...  

Heavy metal pollution is one of the major environmental issues in recent decades owing to the rapid increase in urbanisation and industrialisation. Sediments usually act as sinks for heavy metals due to their complex physical and chemical adsorption mechanisms. In this study, heavy metals like lead (Pb), Zinc (Zn), Cadmium (Cd), Copper (Cu) and Iron (Fe) in the surface sediment from 15 location (upstream and downstream) on the Perak River, Malaysia were investigated by means of inductively coupled plasma optical emission spectroscopy (ICP-OES). The geostatistical prediction map showed the range of Pb, Zn, Cd, Cu and Fe concentration in upstream area was 14.56–27.0 µg/g, 20–51.27 µg/g, 1.51–3.0 µg/g, 6.6–19.12 µg/g and 20.24–56.58%, respectively, and in downstream areas was 27.6–60.76 µg/g, 49.04–160.5 µg/g, 2.77–4.02 µg/g, 9.82–59.99 µg/g and 31.34–39.5%, respectively. Based on the enrichment factor and geoaccumulation index, Cd was found to be the most dominant pollutant in the study area. Pollution load index, sediment quality guidelines and sediment environmental toxicity quotient data showed that the downstream sediment was more polluted than the upstream sediment in the Perak River. The multivariate analysis showed that Pb, Zn and Cu mainly originated from natural sources with minor contribution from human activities, whereas Fe and Cd originated from various industrial and agricultural activities along the studied area.

Author(s):  
Elisabet Navarro-Tapia ◽  
Mariona Serra-Delgado ◽  
Lucía Fernández-López ◽  
Montserrat Meseguer-Gilabert ◽  
María Falcón ◽  
...  

Kohl is a traditional cosmetic widely used in Asia and Africa. In recent years, demand for kohl-based eyelids and lipsticks has increased in Europe, linked to migratory phenomena of populations from these continents. Although the European legislation prohibits the use of heavy metals in cosmetics due to the harmful effects to human health, particularly to pregnant women and children, these elements are still present in certain products. The European Union recommended levels are Pb < 20 ppm, As < 5 ppm, Cd < 5 ppm, Sb < 100 ppm, and Ni < 200 ppm. In Germany, levels are more restrictive: Pb < 2 ppm, As < 0.5 ppm, Cd < 0.1 ppm, Sb < 0.5 ppm, and Ni < 10 ppm. Here, we analyzed 12 kohl-based cosmetics in different presentations (powder, paste, and pencil) that were purchased in Spanish and German local shops. An inductively coupled plasma optical emission spectrophotometer was used to identify toxic elements and heavy metals. Levels of Pb ranged between 1.7 and 410,000 ppm in six of the study samples, four of which had levels above the recommended limit of at least two heavy metals. Arsenic (a carcinogenic element) values were within the range allowed by the EU in only 58% of the studied samples. Moreover, two products doubled this limit, reaching levels of 9.2 and 12.6 ppm. In one of the products, cadmium, related to toxic keratitis, was four times higher (20.7 ppm) than that allowed, while in two other products, these limits were doubled (11.8 and 12.7 ppm). Our results indicate the need to supervise the manufacture of kohl-based traditional products and the analysis of their composition prior distribution in European countries.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 450
Author(s):  
Sandeep Chavan ◽  
Sonali Tayade ◽  
Vidya Gupta ◽  
Vineeta Deshmukh ◽  
Sadanand Sardeshmukh

Natural resources such as plants, animals and minerals have always been used by mankind to develop drugs and marine world is no exception. Marine by-products like conches, pearls, mother of pearl shells, corals and so forth have been used by traditional Ayurvedic practitioners for centuries. The unique methods of these preparations are scientifically designed to eliminate unwanted impurities and convert them into bioavailable form. In this study, Conch (Xanchus pyrum) was used as a marine resource of calcium carbonate and was converted pharmaceutically from its aragonite form to calcite. All the steps of preparations and changes in the properties therein were documented and validated. Further, traditional as well as modern analytical tools were used to study its physical and chemical characters to develop a monograph. The physical characterization included particle size, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA) and Fourier Transform Infra-red (FTIR). Metal composition and heavy metal limits were determined using Inductively Coupled Plasma Optical Emission Spectrometry (ICPOES). This study revealed the rearrangement of aragonite crystals into calcite form by grinding, trituration with aloe vera juice and incineration under controlled conditions. Moreover, the finished product was found to be devoid of organic matrix that is nacre. This study creates a foundation for the development of a master formula for commonly used Shankha Bhasma in Ayurvedic medicines.


2018 ◽  
Vol 7 (1) ◽  
pp. 14-27 ◽  
Author(s):  
Zubairu Darma Umar ◽  
Nor Azwady Abd ◽  
Syaizwan Zahmir Zulkifli ◽  
Muskhazli Mustafa

Polycyclic aromatic hydrocarbons (PAHs) comprised of many dangerous organic pollutants which affect human cell. The choice of phenanthrene and pyrene as model substrates was based on their classification among the most hazardous PAHs group by the US EPA where they belonged to low and high molecular weights PAHs respectively. Biodegradation of these PAHs is the best strategy that completely removes such pollutants in an environmentally friendly manner. However, the bacteria involved are challenged degradation difficulties as a result of PAHs inhibitory effects to the organisms. This research is aimed at formulating phenanthrene and pyrene degrading consortium that effectively perform best even in complex mixture with hazardous heavy metals. Different bacteria consortia were formulated using the compatibility testing and mathematical permutation approach and the best consortium selected. This selected consortium was then subjected to the degradation of both phenanthrene and pyrene separately in a combined mixture with the selected heavy metals from the inductively coupled plasma optical emission spectrophotometer (ICP-OES) analysis. Consortium composition of C. sakazakii MM045 (2%, v/v) and Enterobacter sp. MM087 (2%, v/v) were found to be much effective during phenanthrene (500 mg/L) and pyrene (250 mg/L) degradation. This consortium also resisted more than 6 mg/L each of Nickel (Ni), Cadmium (Cd), Vanadium (V) and Lead (Pb) in such complex degradation which was found to be more than the concentration in the natural habitat the consortium exists prior to isolation. Such performance makes the selected consortium to be an extremely efficient tool for the PAHs degradation application as many biodegradation agents were reported to be less effective when significant concentration of Ni, Cd, V and Pb are present.


2007 ◽  
Vol 34 (2) ◽  
pp. 25 ◽  
Author(s):  
DÉCIO LUIS SEMENSATTO-JR. ◽  
GEÓRGIA CHRISTINA LABUTO ARAÚJO ◽  
ROGÉRIO HIDEKI FERREIRA FUNO ◽  
JOANA SANTA-CRUZ ◽  
DIMAS DIAS-BRITO

This work aims to assess the spatial distribution and the seasonal behavior of metals, no-metals, physical and chemical variables and provide a pre-impact geochemical scenario from non-polluted mangrove sediments of a transect at the Cardoso Island (Cananéia, São Paulo State, Brazil) extending 340 m long landward. Triplicate samples from eight stations were collected in December 2001 and June 2002. Conductivity, pH, temperature, salinity and dissolved oxygen from the sediment interstitial water were checked in field using a Horiba U-10 probe. Metals and no-metals concentrations were obtained employing an inductively coupled plasma optical emission spectrometer (ICP OES) Vista-RL-Varian, radial vision. The sediments reflected two distinct intertidal segments: a “lower plain” (LP) and an “upper plain” (UP). The LP, which comprises the first 100 m landward from the bay, is a muddy environment with higher metal concentration and seasonally more stable than the UP. This latter, extending until the upper boundary of the intertidal zone, is a more oxygenated sandy flat with lower metal concentration. The distinct behavior of the geochemistry pattern observed along the transect in December and June is interpreted as associated with seasonal pluviometric fluctuations. The low metal concentrations denote low anthropogenic interference in the area, one of the most well preserved Brazilian coastal regions. It can be used as reference area to comparative studies involving similar ecosystems and, in the future, to check the environmental state of this mangrove flat.


2020 ◽  
Vol 10 (1) ◽  
pp. 61-69
Author(s):  
Diana Demiyah Mohd Hamdan ◽  
Amirah Syuhada Mohd Azman ◽  
Fazilah Musa ◽  
Mohd Khalizan Sabullah

The prospect of three native upland paddy landraces known as Bokilong, Ponsulak and Taragang as heavy metals accumulator for phytoremediation was determined. Bioaccumulation of heavy metals (As, Cd, Cr, Cu, Fe, Pb, and Zn) in various parts of paddy plants collected from Kiulu valley, North Borneo in the natural conditions during the vegetative phase and harvest season were analysed by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). All selected heavy metals were traced in soil samples of all three paddy landraces rhizosphere where the most available heavy metals were Fe followed by Zn. Heavy metals bioavailability in soil seemed to be influenced by the local climate of the cultivation field. Bokilong landrace is an accumulator of As, Cd, Cu, Pb and Zn. Ponsulak paddy can help clean up the soil by phytoextraction of As, Cr, Cu, Fe and Zn. Taragang paddy has a prospect in phytoextraction of Cd and Pb to remediate excess amount of this element in the soil. Different heavy metals concentration trends were accumulated in these three paddy landraces in grain indicated different nutritional values. Heavy metal uptake characteristic differs between upland paddy landraces and there was also environmental influence affecting the mobility rate of these elements in paddy plant depending on the element type and paddy genotype.


Sign in / Sign up

Export Citation Format

Share Document