scholarly journals Occurrence of Aflatoxin M1 in Raw Milk from Manufacturers of Infant Milk Powder in China

Author(s):  
Songli Li ◽  
Li Min ◽  
Gang Wang ◽  
Dagang Li ◽  
Nan Zheng ◽  
...  

Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 440
Author(s):  
Abu Hasan Sumon ◽  
Farjana Islam ◽  
Nayan Chandra Mohanto ◽  
Rahanuma Raihanu Kathak ◽  
Noyan Hossain Molla ◽  
...  

As milk provides both micro- and macronutrients, it is an important component in the diet. However, the presence of aflatoxin B1 (AFB1) in the feed of dairy cattle results in contamination of milk and dairy products with aflatoxin M1 (AFM1), a toxic metabolite of the carcinogenic mycotoxin. With the aim to determine AFM1 concentrations in milk and milk products consumed in Bangladesh, in total, 145 samples were collected in four divisional regions (Sylhet, Dhaka, Chittagong, and Rajshahi). The samples comprised these categories: raw milk (n = 105), pasteurized milk (n = 15), ultra-high temperature (UHT)-treated milk (n = 15), fermented milk products such as yogurt (n = 5), and milk powder (n = 5). AFM1 levels in these samples were determined through competitive enzyme-linked immunosorbent assay (ELISA). Overall, AFM1 was present in 78.6% of milk and milk products in the range of 5.0 to 198.7 ng/L. AFM1 was detected in 71.4% of raw milk (mean 41.1, range 5.0–198.7 ng/L), and in all pasteurized milk (mean 106, range 17.2–187.7 ng/L) and UHT milk (mean 73, range 12.2–146.9 ng/L) samples. Lower AFM1 levels were found in yogurt (mean 16.9, range 8.3–41.1 ng/L) and milk powder samples (mean 6.6, range 5.9–7.0 ng/L). About one-third of the raw, pasteurized, and UHT milk samples exceeded the EU regulatory limit (50 ng/L) for AFM1 in milk, while AFM1 levels in yogurt and milk powder samples were well below this limit. Regarding regions, lower AFM1 contamination was observed in Chittagong (mean 6.6, max 10.6 ng/L), compared to Sylhet (mean 53.7, max 198.7 ng/L), Dhaka (mean 37.8, max 97.2 ng/L), and Rajshahi (mean 34.8, max 131.4 ng/L). Yet, no significant difference was observed in AFM1 levels between summer and winter season. In conclusion, the observed frequency and levels of aflatoxin contamination raise concern and must encourage further monitoring of AFM1 in milk and milk products in Bangladesh.



Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3840 ◽  
Author(s):  
Xiaodong Guo ◽  
Fang Wen ◽  
Qinqin Qiao ◽  
Nan Zheng ◽  
Matthew Saive ◽  
...  

In this paper, a rapid and sensitive fluorescent aptasensor for the detection of aflatoxin M1 (AFM1) in milk powder was developed. Graphene oxide (GO) was employed to quench the fluorescence of a carboxyfluorescein-labelled aptamer and protect the aptamer from nuclease cleavage. Upon the addition of AFM1, the formation of an AFM1/aptamer complex resulted in the aptamer detaching from the surface of GO, followed by the aptamer cleavage by DNase I and the release of the target AFM1 for a new cycle, which led to great signal amplification and high sensitivity. Under optimized conditions, the GO-based detection of the aptasensor exhibited a linear response to AFM1 levels in a dynamic range from 0.2 to 10 μg/kg, with a limit of detection (LOD) of 0.05 μg/kg. Moreover, the developed aptasensor showed a high specificity towards AFM1 without interference from other mycotoxins. In addition, the technique was successfully applied for the detection of AFM1 in infant milk powder samples. The aptasensor proposed here offers a promising technology for food safety monitoring and can be extended to various targets.



Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 110 ◽  
Author(s):  
Agha Yunus ◽  
Nida Imtiaz ◽  
Haider Khan ◽  
Mohammed Ibrahim ◽  
Yusuf Zafar

A longitudinal one-year study was conducted to determine aflatoxin M1 levels in different types of milk marketed in Pakistan. Processed and raw liquid milk from 21 sources, two milk powder and six tea whitener brands were sampled on monthly basis from Islamabad. The aflatoxin M1 levels in liquid milk were lower (p < 0.05) in summer (April to July) compared with the levels in winter (January, November and December). The mean aflatoxin M1 levels were 254.9, 939.5, and 1535.0 ng/L in UHT, pasteurized, and raw milk, respectively (differing at p < 0.001). The mean toxin level in powdered milk after reconstitution was 522.1 ng/L. Overall, 12.9, 41.0, 91.9 and 50.0% of the UHT, pasteurized, raw and powdered milk samples, respectively, exceeded the Codex maximum tolerable limit of 500 ng of aflatoxin M1/L. It was estimated that consumers of raw and processed milk were exposed to 11.9 and 4.5 ng aflatoxin M1, respectively, per kg of body weight daily. The study indicates potential aflatoxin M1 exposure risks for the consumers of raw milk in the country. The levels of the toxin though comparatively lower in milk powder, requires attention as this type of milk is consumed by infants.



2019 ◽  
Vol 43 (1) ◽  
pp. 50-58
Author(s):  
H. S. Alnaemi

     Fate of AflatoxinM1 in soft white cheese and its by-product (whey) and in yogurt locally made from raw sheep's and goat's milk experimentally inoculated with 0.05 and 0.5 µg/l AflatoxinM1 were investigated using ELISA technique. Results reported that AflatoxinM1 was concentrated in cheese at levels significantly higher than that recorded in the raw milk that used for its processing, with a significant decrease in AflatoxinM1 levels in its by-product (whey) comparable to the raw milk used in manufacturing at both inoculated levels. Yogurt produced from raw sheep's milk at second inoculated level exerted AflatoxinM1concentration significantly lower than that present in the milk. Significant differences in AflatoxinM1distribution in cheese and whey produced from sheep's milk comparable to their counterparts produced from goat's milk were recorded. Finally, results revealed the efficacious role of the various dairy manufacturing processes in AflatoxinM1 distribution and the necessity to issue of local legislations concerning the maximum permissible limits for AflatoxinM1 in milk in order to stay within the universal permissible levels for AflatoxinM1 in dairy products to provide greater protection for consumer health. 



2019 ◽  
Vol 102 (5) ◽  
pp. 3985-3993 ◽  
Author(s):  
Yaofeng Zhou ◽  
Sicheng Xiong ◽  
KangKang Zhang ◽  
Lin Feng ◽  
Xuelan Chen ◽  
...  


Food Control ◽  
2009 ◽  
Vol 20 (2) ◽  
pp. 136-138 ◽  
Author(s):  
Ji Eun Lee ◽  
Byung-Man Kwak ◽  
Jang-Hyuk Ahn ◽  
Tae-Hong Jeon


Author(s):  
Huska Jukić ◽  
Samira Dedić ◽  
Miloš Rodić ◽  
Zlatko Jusufhodžić ◽  
Dinko Demirović
Keyword(s):  
Raw Milk ◽  


2014 ◽  
Vol 38 (2) ◽  
pp. 9-16
Author(s):  
Najim Hadi Najim

     Milk and dairy products are fundamental components in the human diet and may be the principle way for entrance of Aflatoxin M1 (AFM1) in to the human body. All milk and dairy products samples were tested for the occurrence of AFM1 by the competitive ELISA technique. Out of 32 bovine raw milk samples that were collected from eight villages around Baghdad province, 32 samples (100 %) were contaminated with AFM1 ranging from 0.15 to 86.96ng/kg with mean value of 42.37±26.07 ng/kg, of which 17 samples were contaminated with concentrations < 50 ng/kg and 15 samples exceeded the maximum acceptable level of AFM1 in milk (50 ng/kg) imposed by the European legislation. The raw milk samples belonged to animals fed with composite and stored fodder as in Althahab Alabiadh, Radhwaniya and Fadhaliya villages had higher significantly AFM1 concentrations over all the other five villages (Grazing feed). All 32 (100%) locally produced soft white cheese samples analyzed were contaminated with AFM1 ranging from 31.84 to 89.44 ng/kg with the mean value of 59.92±17.03 ng/kg. Out of 32 locally produced yoghurt samples analyzed, 32 samples (100%) were contaminated with AFM1 ranging from 0.16 to 42.74 ng/kg with the mean value of 16.92±11.55 ng/kg. Thirty samples (100%) of the examined 30 imported UHT milk samples that were collected from different commercial companies in the province of Baghdad presented significantly  high contamination level with AFM1 that were found to range from 0.18 to 85.66 ng/kg.



Sign in / Sign up

Export Citation Format

Share Document