scholarly journals Relationship between the Main Communities and Environments of an Urban River and Reservoir: Considering Integrated Structural and Functional Assessments of Ecosystems

Author(s):  
Dehao Tang ◽  
Xingjian Liu ◽  
Xutao Wang ◽  
Kedong Yin

Rivers and reservoirs in urban areas have been associated with environmental quality problems because of the discharge of domestic waste into water bodies. However, the key effects and the extent to which environmental factors can influence the integrated structure and function of urban river ecosystems remain largely unknown. Here, a relationship model involving the species composition of the community and the various environmental factors related to the water and sediment was developed in the dry season (N) and the flood season (F) in both the urban Jiaomen River (JR) and the Baihuitian Reservoir (BR) of Guangzhou City. Canonical correspondence analysis was used to determine the spatiotemporal drivers of the phytoplankton, zooplankton and macrobenthic communities in the river and reservoir systems. The combination of the thermodynamic-oriented ecological indicators and the biodiversity measures reflected the integrated structure and function of the ecosystems. Overall, the plankton community composition was found to be largely determined by the nutrient concentrations and oxygen index, and the development of the macrobenthic communities was mainly restricted by organic matter and heavy metals. Based on the results of the integrated assessment, the structure and function of the JR ecosystem were superior to that of the BR, and the F period displayed healthier results than the N period. Moreover, the structural and functional statuses of the high eco-exergy grade communities (macrobenthic communities) in the ecosystem influenced the regional changes observed in the results of the integrated assessment. The significant seasonal variations in the plankton community affected the seasonal variations in the integrated assessment. The results of this study provide a scientific basis for the management and restoration of regional freshwater environments and ecosystems.

2017 ◽  
Vol 1 (3) ◽  
pp. 327-336 ◽  
Author(s):  
Benjamin W. Mooneyham ◽  
Michael D. Mrazek ◽  
Alissa J. Mrazek ◽  
Kaita L. Mrazek ◽  
Elliott D. Ihm ◽  
...  

2003 ◽  
Vol 15 (4) ◽  
pp. 927-968 ◽  
Author(s):  
ALLAN L. REISS ◽  
CHRISTOPHER C. DANT

Analyzing gene–brain–behavior linkages in childhood neurodevelopmental disorders, a research approach called “behavioral neurogenetics,” has provided new insights into understanding how both genetic and environmental factors contribute to complex variations in typical and atypical human development. Research into etiologically more homogeneous disorders, such as fragile X syndrome, in particular, allows the use of more precise metrics of genetic risk so that we can more fully understand the complex pathophysiology of childhood onset neurodevelopmental disorders. In this paper, we review our laboratory's behavioral neurogenetics research by examining gene–brain–behavior relationships in fragile X syndrome, a single-gene disorder that has become a well-characterized model for studying neurodevelopmental dysfunction in childhood. Specifically, we examine genetic influences, trajectories of cognition and behavior, variation in brain structure and function, and biological and environmental factors that influence developmental and cognitive outcomes of children with fragile X. The converging approaches across these multilevel scientific domains indicate that fragile X, which arises from disruption of a single gene leading to the loss of a specific protein, is associated with a cascade of aberrations in neurodevelopment, resulting in a central nervous system that is suboptimal with respect to structure and function. In turn, structural and functional brain alterations lead to early disruption in emotion, cognition, and behavior in the child with fragile X. The combination of molecular genetics, neuroimaging, and behavioral research have advanced our understanding of the linkages between genetic variables, neurobiological measures, IQ, and behavior. Our research and that of others demonstrates that neurobehavior and neurocognition, genetics, and neuroanatomy are all different views of the same intriguing biological puzzle, a puzzle that today is rapidly emerging into a more complete picture of the intricate linkages among gene, brain, and behavior in developing children. Understanding the complex multilevel scientific perspective involved in fragile X will also contribute to our understanding of normal development by highlighting developmental events throughout the life span, thereby helping us to delineate the boundaries of pathology.


Circulation ◽  
1983 ◽  
Vol 67 (4) ◽  
pp. 896-901 ◽  
Author(s):  
R Fagard ◽  
A Aubert ◽  
R Lysens ◽  
J Staessen ◽  
L Vanhees ◽  
...  

2017 ◽  
Vol 68 (10) ◽  
pp. 1877 ◽  
Author(s):  
Wang Tian ◽  
Huayong Zhang ◽  
Lei Zhao ◽  
Hai Huang

Phytoplankton is the primary producer and the basis of most aquatic food webs. Characterising the variations in phytoplankton communities and the factors affecting these variations in a fluctuating environment are central issues in ecology and essential to developing appropriate conservation strategies. In the present study, seasonal variations in the phytoplankton community and the driving environmental factors were analysed based on data from Lake Nansihu in 2013. In all, 138 phytoplankton species were identified. The phytoplankton community exhibited seasonal variations, with a mean abundance that ranged from 5.00×105 cells L–1 in winter to 4.57×106 cells L–1 in summer and a mean biomass that varied from 0.44mgL–1 in winter to 3.75mgL–1 in summer. A spring algal bloom did not appear in this warm, temperate monsoon lake, but an algal bloom did appear in summer when the temperature and nutrient concentrations were high. There were substantial seasonal variations in the dominant phytoplankton taxa, from Chlorophyta, Bacillariophyta and Euglenophyta in spring to Chlorophyta and Bacillariophyta in summer, followed by dominance of Chlorophyta in autumn and Bacillariophyta in winter. Results of canonical correspondence analysis indicated that although the environmental factors affecting the seasonal variations in different phytoplankton species varied, water temperature, total nitrogen, total phosphorus and ammonia nitrogen appeared to be the most dominant. These four variables were also the main environmental factors driving the seasonal variations in the phytoplankton community in the lake. The results of the present study will be useful in guaranteeing the water quality and ecological security of Lake Nansihu.


2013 ◽  
Vol 726-731 ◽  
pp. 807-811
Author(s):  
Yun Jiang ◽  
Fan Chen

During the process of urbanization, impermeable surface areas enlarge and rain runoff and peak discharges grow, rainstorm become more frequent. As more rain water and pollutants mixed with each other, more areas of urban runoff are polluted, causing significant change to aquatic organisms, especially fish, their population and structure. In order to balance the relations between urban development and river eco-environmental protection, avoid reappearance of mega rainstorm disaster like the one on July 21st in Beijing, we suggest protecting and safeguarding the structure and function of urban river ecological system from perspectives of urban planning, eco-environment improvement and integrated management over urban river system.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Prasanthi Koganti ◽  
Jianbo Yao ◽  
Beth M. Cleveland

Growth rates in fish are largely dependent on genetic and environmental factors, of which the latter can be highly variable throughout development. For this reason, muscle growth in fish is particularly dynamic as muscle structure and function can be altered by environmental conditions, a concept referred to as muscle plasticity. Myogenic regulatory factors (MRFs) like Myogenin, MyoD, and Pax7 control the myogenic mechanisms regulating quiescent muscle cell maintenance, proliferation, and differentiation, critical processes central for muscle plasticity. This review focuses on recent advancements in molecular mechanisms involving microRNAs (miRNAs) and DNA methylation that regulate the expression and activity of MRFs in fish. Findings provide overwhelming support that these mechanisms are significant regulators of muscle plasticity, particularly in response to environmental factors like temperature and nutritional challenges. Genetic variation in DNA methylation and miRNA expression also correlate with variation in body weight and growth, suggesting that genetic markers related to these mechanisms may be useful for genomic selection strategies. Collectively, this knowledge improves the understanding of mechanisms regulating muscle plasticity and can contribute to the development of husbandry and breeding strategies that improve growth performance and the ability of the fish to respond to environmental challenges.


Sign in / Sign up

Export Citation Format

Share Document