scholarly journals Environmental Risk Assessment of Metals in the Volcanic Soil of Changbai Mountain

Author(s):  
Qing Ma ◽  
Lina Han ◽  
Jiquan Zhang ◽  
Yichen Zhang ◽  
Qiuling Lang ◽  
...  

Tianchi volcano is a dormant active volcano with a risk of re-eruption. Volcanic soil and volcanic ash samples were collected around the volcano and the concentrations of 21 metals (major and trace elements) were determined. The spatial distribution of the metals was obtained by inverse distance weight (IDW) interpolation. The metals’ sources were identified and their pollution levels were assessed to determine their potential ecological and human health risks. The metal concentrations were higher around Tianchi and at the north to the west of the study area. According to the geo-accumulation index (Igeo), enrichment factor (EF) and contamination factor (CF) calculations, Zn pollution was high in the study area. Pearson’s correlation analysis and principal component analysis showed that with the exception of Fe, Mn and As, the metals that were investigated (Al, K, Ca, Na, Mg, Ti, Cu, Pb, Zn, Cr, Ni, Ba, Ga, Li, Co, Cd, Sn, Sr) were mostly naturally derived. A small proportion of Li, Pb and Zn may have come from vehicle traffic. There is no potential ecological risk and non-carcinogenic risk because of the low concentrations of the metals; however, it is necessary to pay attention to the carcinogenic risk of Cr and As in children.

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 410
Author(s):  
Mohammad Abdus Salam ◽  
Mohammad Ashraful Alam ◽  
Sulav Indra Paul ◽  
Fatama Islam ◽  
Dinesh Chandra Shaha ◽  
...  

This study aimed to determine the levels and possible sources of heavy metals (HMs) in the sediments of Chalan beel (a large lake-like aquatic ecosystem) area located in the northwestern part of Bangladesh. The mean concentrations (mg kg−1) of two HMs, Cd (6.22) and Pb (51.39) exceeded the world normal averages (WNA), whereas the mean concentrations (mg kg−1) of Ni (60.46), Zn (10.75), Mn (8.64) and Cu (4.71) were below the WNA. The sediments showed significant enrichment with Cd, Pb and Ni in the studied area. The geo-accumulation index values of Cd (3.72) and Pb (0.76) were significantly higher in the sediments. The contamination factor and potential ecological risk index values of Cd and Pb revealed that Chalan beel was extremely and moderately contaminated by these heavy metals, respectively. Analysis of dye complexes used in handlooms around the Chalan beel areas revealed that mean concentrations of Cd and Pb exceeded the WNA. Furthermore, analyses of principal component, cluster and correlation matrix indicated that the presence of the higher levels of Cd and Pb in the sediments might be linked to various anthropogenic activities like discharged dyes into the beel water from the nearby handloom dyeing factories.


2018 ◽  
Vol 6 (1) ◽  
pp. 108 ◽  
Author(s):  
Ram Proshad ◽  
Md. Saiful Islam ◽  
Tapos Kormoker

This study was conducted to assess the ecological risk of heavy metals in soils collected from the industrial vicinity of Tangail district in Bangladesh. In this study, the levels of six heavy metals namely chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd), and lead (Pb) in 15 sampling sites around the industrial vicinity of Tangail district in Bangladesh were assessed. The mean concentration of Cr, Ni, Cu, As, Cd and Pb in studied soils were 11.56, 23.92, 37.27, 6.11, 2.01, and 17.46 mg/kg, respectively. Certain indices, including the enrichment factor (EF), contamination factor (Cif), geoaccumulation index (Igeo), pollution load index (PLI), toxic unit analysis, and principal component analysis (PCA) were used to assess the ecological risk. The enrichment factor of all the studied metals for all sampling sites were in the descending order of Cd > Cu > As > Pb >Ni > Cr. The contamination factor values revealed that the studied soils were highly impacted by Cd. The pollution load index (PLI) values of Cd were higher than 1, indicating the progressive deterioration of soil due to Cd contamination. In the context of potential ecological risk (PER), soils from all sampling sites showed moderate to very high potential ecological risk.


Author(s):  
Inga Zinicovscaia ◽  
Rodica Sturza ◽  
Octavian Duliu ◽  
Dmitrii Grozdov ◽  
Svetlana Gundorina ◽  
...  

The correct assessment of the presence of potentially contaminating elements in soil, as well as in fruits cultivated and harvested from the same places has major importance for both the environment and human health. To address this task, in the case of the Republic of Moldova where the fruit production has a significant contribution to the gross domestic product, the mass fractions of 37 elements (Na, Mg, Al, Ca, Si, K, Mn, Fe, Sc, Ti, V, Cr, Co, Ni, Zn, As, Br, Rb, Sr, Zr, Mo, Cd, Sb, Cs, Ba, La, Ce, Nd, Sm, Eu, Tb, Yb, Hf, Ta, W, Th, and U) were determined by instrumental neutron activation analysis in soil collected from four Moldavian orchards. In the case of three types of fruits, grapes, apples, and plums, all of them collected from the same places, only 22 elements (Na, Mg, Cl, K, Ca, Sc, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Sb, Cs, Ba, La, Th, and U) were detected. The enrichment factor, contamination factor, geo-accumulation index, as well as pollution load index were calculated to assess the soil contamination. At the same time, the metal uptake from the soil into fruits was estimated by means of transfer factors. Soil samples showed for almost all elements mass fractions closer to the upper continental crust with the exception of a slightly increased content of As, Br, and Sb, but without overpassing the officially defined alarm thresholds. In the case of fruits, the hazard quotients for all elements with the exception of Sb in fruits collected in two orchards were below unity. A subsequent discriminant analysis allowed grouping all fruits according to their type and provenance.


Author(s):  
Song Chen ◽  
Cancan Wu ◽  
Shenshen Hong ◽  
Qianqian Chen

To understand the content, pollution, distribution and source and to establish a geochemical baseline of heavy metal elements in soil under the influence of high-density population, the concentrations of heavy metal elements Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Hg, Pb and Fe were determined in 23 soil samples in Suzhou University, and geo-accumulation index, enrichment factor, principal component analysis, spatial analysis and regression analysis were completed. The results showed the following: The elements Cu and As were slightly polluted, while the other heavy metal elements were not. The elements Cd, Cu, Ni and As in soils were mainly caused by agricultural activities of chemical fertilizer, whereas the elements Zn and Hg were impacted by the chemicals and batteries. The heavy metal elements in the north were lower than in the south of the campus, as a whole. The enrichment of elements Cu, As and Cd was caused by the east–west river on the campus, and the enrichment of the elements Mn, Ni and Zn was induced by the reservoir. Biochemical experiments and vehicle parking influenced the spatial enrichment of Cr, Co and Pb, while domestic waste led to the spatial differentiation of Hg concentrations. The regression curve between heavy metal elements and Fe was established, and the background values of the heavy metals Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Hg and Pb are 50.90, 489.37, 11.76, 37.74, 55.70, 58.22, 20.07, 0.09, 0.08 and 24.13 mg/kg, respectively.


2020 ◽  
Vol 71 (4) ◽  
pp. 155-170
Author(s):  
Andra Bucse ◽  
Dan Vasiliu ◽  
Sorin Balan ◽  
Oana Cristina Parvulescu ◽  
Tanase Dobre

22 surface sediment samples were collected in August 2018 from the Romanian inner shelf (Nord-Western Black Sea). Concentrations of some metals (Al, Cr, Cu, Ni, Zn, As, Pb, and Hg), TOC content, and grain size of sediment samples were determined by specific techniques. The order of accumulation of heavy metals was Zn]Cr]Ni]Cu]Pb]As]Hg. Multivariate analysis indicated that As, Ni, Cu, Zn, Pb, and Hg concentrations had similar behavior and they were positively correlated with the clay content, whereas Al and Cr concentrations presented close patterns and they were negatively correlated with the water depth. Sediment pollution assessment indices (enrichment factor, contamination factor, and geo-accumulation index) suggested no/low pollution for most of the metals analyzed, excepting for Pb and Hg (moderate pollution). Values of pollution indices highlighted a higher sediment pollution with Pb and Hg along the Danube�s plume direction, in the oil platform area (eastern edge of the Portita Bay), and partially in the Constanta and Mangalia area, suggesting the influence of port activities, tourism, urban wastewater discharges, oil and gas extraction.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 564
Author(s):  
Tahereh Moghtaderi ◽  
Ata Shakeri ◽  
Andrés Rodríguez-Seijo

Potentially toxic elements (PTE) are considered to be dangerous threats, both for human health and the environment. Here, the contamination level, sources, and ecological risks posed by PTE were investigated in 19 topsoils from agricultural lands in the Bandar Abbas County on the southern coast of Iran. The soil fraction <63 μm was used for the analysis of the pseudototal contents of PTE (arsenic, cadmium, cobalt, chromium, copper, lead, manganese, molybdenum, nickel, vanadium, and zinc). The results were analyzed using principal component analysis (PCA) and Pearson’s correlations, different pollution indices [enrichment factor (EF), contamination factor (Cf), and modified degree of contamination (mCd), and the potential ecological risk index (PERI). The results of the pollution indices showed that the contamination levels of the studied agricultural soils are low to moderate, while the average PERI values indicate that the ecological risks of PTE range from low to high in the soils of the studied area. Correlations and PCA analyses suggest that studied elements have three possible origins: geogenic (chromium, cobalt, copper, manganese, vanadium, and zinc), anthropogenic (cadmium, nickel, phosphorus and lead) and atmospheric (arsenic) sources. These findings are helpful for the long-term assessment of PTE in the Bandar Abbas County.


2014 ◽  
Vol 8 (1) ◽  
pp. 32-37
Author(s):  
Jie Yang ◽  
Baoxue Zhang ◽  
Xiaojuan Peng ◽  
Hua Wang ◽  
Zhihang Li ◽  
...  

This study concerns the distribution and potential sources of elevated heavy metal concentrations (Cu, Zn, Pb, Cd, As) in surface sediments of the Dongzhai Harbor, Hainan Island,a national important mangrove ecosystem protection area.It was found that the pollution of As may occur occasional biological effect by numerical Sediment Quality Guidelines. Further, Geoaccumulation indices (Igeo) suggest there are serious pollution levels of As at all five stations. Spatial distribution of ecotoxicological index and pollution load index suggested that most of the surface sediments have a 9% probability of being toxic and the potential ecological risk zone appear in northern and southern of Dongzhai Harbor. Correlation analysis, principal component analysis, and cluster analysis showed that these metals primarily originate from natural sources. As and Pb resulted primarily from aquaculture, and combustion of gasoline and diesel fuel by ships. The present study provides a baseline record of heavy metals in mangrove surface sediments on the Dongzhai Harbor, and provide a useful aid for sustainable marine management in this region.


2021 ◽  
Author(s):  
Troyee Barua ◽  
AKM Saiful Islam Bhuian ◽  
Mayeen Uddin Khandaker ◽  
Nipa Deb ◽  
Shahadat Hossain ◽  
...  

Abstract The increased human population and associated activities may create a risk in the ecological balance of Chattogram Hill Tracts (CHT), Bangladesh via contamination of soil with toxic heavy metals. Thus, the present study was conducted to assess the concentration of heavy metals (Lead, Cadmium, Copper, Zinc, Iron, Manganese, Chromium and Nickel) in forest soils of the CHT area by using an atomic absorption spectrometer. The degree of contamination of soil was evaluated by five indices: geo-accumulation index (I geo ), enrichment factor (EF), contamination factor (CF), pollution load index (PLI) and potential ecological risk index (PERI). According to these criteria, these soils can be classified as moderately contaminated with some metals. Furthermore, the identification of pollution sources based on principal component analysis and hierarchical cluster analysis have revealed that all analyzed metals are anthropogenic except Fe. Calculated hazard index>1 indicates the possibility of noncarcinogenic effect due to higher value of Fe. Carcinogenic risks through the ingestion, inhalation and dermal pathway for carcinogenic elements (Pb, Cd, Cr, and Ni) shows a non-significant risk (CR<10 -6 ) for both children and adults living in the studied area. Measured data may help the policymakers to reduce the potential effects of soil contamination on eco-environment and human health.


2013 ◽  
Vol 11 (12) ◽  
pp. 1981-1995 ◽  
Author(s):  
Marzena Dabioch ◽  
Andrzej Kita ◽  
Piotr Zerzucha ◽  
Katarzyna Pytlakowska

AbstractThe concentration of elements in sediments is an important aspect of the quality of water ecosystems. The element concentrations in bottom sediments from Goczalkowice Reservoir, Poland, were investigated to determine the levels, accumulation and distribution of elements; to understand the contamination and potential toxicity of elements; and to trace the possible source of pollution. Sediments were collected from 8 sampling points. The functional speciation, mobility and bioavailability of elements were evaluated by means of modified Tessier sequential extraction. The element contents were measured by optical emission spectrometry with inductively coupled plasma. The experimental results were analyzed using chemometric methods such as principal component analysis and cluster analysis to elucidate the metal distributions, correlations and associations. The highest concentrations of most elements were found at the center of the reservoir. The distribution of metals in the individual fractions was varied. To assess the extent of anthropogenic impact indices, contamination factor, degree of contamination, metal pollution index and risk assessment code were applied. The calculated factors showed the highest contamination factor and the ability of chromium to be released from sediments. The degree of contamination showed that the area is characterized by a very high contamination. Strontium and manganese showed high potential ecological risk for sediments.


2020 ◽  
Vol 3 (1) ◽  
pp. 15-36
Author(s):  
Mahmoud Mohamed ◽  
Mohamed Abou-Kota ◽  
Shimaa Ganzou ◽  
Abdellatif Abdellatif

Purpose: A comprehensive monitoring and evaluation study was conducted on wells, water table and drainage water for water quality index. The study aimed to achieve a sustainable integrated management for water and soil at the study area. Methodology: Assessment and evaluation of water samples were: Evaluate the physic- chemical properties; Discuss the Hydro chemical coefficient; Assessment of the appropriate use of water quality such as permeability index (PI) and Kelly's indicator (KI); Water quality identification and assessment through calculate of WQI;  It was conducted various assessments of the elements within the water, such as the contamination factor (CFi); geo-accumulation index (Igeo) and the potential ecological risk index (RI).   Findings: The results shown that the dominance of Na+ cation and Cl- anions due to the influence of marine sediments on water elements which resulted in increased the mention  ions in drainage water> water table> wells. TDS values of wells, water tables and drainage water were no detected, 2374 to 9088 and 3641.6 to 13952mg L-1, respectively and RSC values of water samples were not significant. KI indicated that the well water is safe for drinking and the water table and drainage water are not acceptable for drinking. PI indicated that the suitability of water to be used in agriculture. WQI confirmed that the water is highly appropriated for Olive's tree and Palms cultivation. CFi indicated that the wells gave low to moderate contamination of Mn, Cu and B while, the Fe, Zn and Si concentrations were low. A very high degree of contamination by Fe, Mn, Zn, Cu and B were observed in water tables; however Si concentration was low to considerable degree. Generally, drainage water gave a very high degree of contamination with Mn, Cu, and B, whereas the concentration of Fe, Zn and Si were low, moderate and considerable degree. Analytical modeling proved that the Igeo values for Mn, Zn, Cu and Si were assigned to Class 0 for water sources at study area. RI indicated the wells and water table samples (exception of Cu was moderate to high) were slightly risk as well as the RI of drainage water samples was low risk. Contribution to theory, practice and policy: The results provided the relationships between the water resources assessment and water quality management, and to ensure their environmental reflections such as (contamination factor (CFi); geo-accumulation index (Igeo); the potential ecological risk (RI)), with the safe use of water based on its properties. Keywords: Hydro chemical coefficient; permeability index (PI); Kelly's indicator (KI); water quality index (WQI); contamination factor (CFi); geo-accumulation index (Igeo); the potential ecological risk (RI).


Sign in / Sign up

Export Citation Format

Share Document