scholarly journals Assessment of elemental contamination in the bottom sediments from a dam reservoir using a sequential extraction technique and chemometric analysis

2013 ◽  
Vol 11 (12) ◽  
pp. 1981-1995 ◽  
Author(s):  
Marzena Dabioch ◽  
Andrzej Kita ◽  
Piotr Zerzucha ◽  
Katarzyna Pytlakowska

AbstractThe concentration of elements in sediments is an important aspect of the quality of water ecosystems. The element concentrations in bottom sediments from Goczalkowice Reservoir, Poland, were investigated to determine the levels, accumulation and distribution of elements; to understand the contamination and potential toxicity of elements; and to trace the possible source of pollution. Sediments were collected from 8 sampling points. The functional speciation, mobility and bioavailability of elements were evaluated by means of modified Tessier sequential extraction. The element contents were measured by optical emission spectrometry with inductively coupled plasma. The experimental results were analyzed using chemometric methods such as principal component analysis and cluster analysis to elucidate the metal distributions, correlations and associations. The highest concentrations of most elements were found at the center of the reservoir. The distribution of metals in the individual fractions was varied. To assess the extent of anthropogenic impact indices, contamination factor, degree of contamination, metal pollution index and risk assessment code were applied. The calculated factors showed the highest contamination factor and the ability of chromium to be released from sediments. The degree of contamination showed that the area is characterized by a very high contamination. Strontium and manganese showed high potential ecological risk for sediments.

Author(s):  
Milaim Sadiku ◽  
Mensur Kelmendi ◽  
Sadija Kadriu

Purpose. To show the impact of the Mitrovica Industrial Park landfill on the Sitnica River pollution through sediment analysis. For this purpose, to assess the level of pollution and ecological impact pollution indicators were used: geo-accumulation index, contamination factor, pollution rate, and modified pollution rate, enrichment factor, potential ecological risk index, pollution load index. Methodology. The ISO 5667-15:2009 standard method was used for sediment sampling. At the same time, the standard method ISO 11885:2007 was used for the determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES). Analytical methods were used to calculate pollution indicators. Findings. From the obtained results it can be concluded that the concentrations of heavy metals in the sediment of the river Sitnica have exceeded the allowed values. According to our estimates, the impact of the landfill on the pollution of the river Sitnica is undeniable. Originality. The paper provides new data on the impact of the MIP landfill on the pollution of the Sitnica River and, respectively, on its ecological status. The findings are based on the obtained results from the analyzed samples and their comparison with the allowed values for sediments. Pollution also affects the food chain as the water of this river is used for irrigation of gardens; moreover, fish are harvested in this river. Practical value. It should be taken into consideration that the content and the problematic delved in this paper are vivid and represent a prominent interest to those who deal with this issue.


2020 ◽  
Vol 70 (12) ◽  
pp. 4153-4162

Heavy metals are among the most persistent pollutants in the ecosystem due to their resistance at decomposition in natural condition. They have low solubility in water and tend to be adsorbed and accumulated on bottom sediments. Anthropogenic actions conduct to the discharge of heavy metals from various sources (industrial, urban, and/or agriculture) to rivers water that are ultimately immobilized in marine sediments under current action. In this work, an investigation of pollution and ecological risk in the Olt River waters is performed based on assessing the accumulation of heavy metals in sediments. Therefore, sediment samples were collected from 22 locations on the Olt River, in its middle and lower basin, and investigated by inductively coupled plasma mass spectrometry which allows us to measure very low elements concentration levels. Two main aspects were foreseen in this study: (i) determining the content and spatial distribution of heavy metals in the Olt River surface sediments, and (ii) assessing the pollution level based on various parameters, namely the contamination factor, the geo-accumulation, pollution load and Nemerow pollution indexes, the potential ecological risk, and risk assessment code. This methodology proves to be an appropriate tool to apply in decision-making on environmental risk management. Keywords: heavy metals, ecological risk, pollution, ecosystem, sediments


2016 ◽  
Vol 76 (4) ◽  
pp. 871-877 ◽  
Author(s):  
E. Silva ◽  
Z. C. V. Viana ◽  
N. F. A. Souza ◽  
M. G. A. Korn ◽  
V. L. C. S. Santos

Abstract Concentrations of ten elements (Cd, Cr, Cu, Fe, Ni, Pb, Se, Sr, V and Zn) were determinate in muscle tissues of 13 fish species from Aratu Bay, Bahia, Brazil by inductively coupled plasma optical emission spectrometry. The accuracy and precision of our results were checked by using two certified reference materials: BCR-422 cod muscle and SRM 1566b oyster tissue. The average trace element concentrations in the fish species varied in the following ranges, in μg g–1: 0.03-0.8 for Cr; 2.0-33.7 for Cu, 2.4-135.1 for Fe, 1.6-25.6 for Se; 1.6-35.1 for Sr; and 2.8-40.5 for Zn. The Diaptereus rhombeus (carapeba) specie presented the highest concentrations of Se, Cu and Fe. Chromium and Se were present at levels above the limit of tolerance allowed by the National Agency of Sanitary Vigilance (ANVISA). The results were also evaluated using the multivariate analysis techniques: principal component analysis (PCA) and hierarchical cluster analysis (HCA).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao-Ping Huang ◽  
Lei Lei ◽  
Shun-Xin Lei ◽  
Wei-Wei Zhu ◽  
Jun Yan

AbstractSiraitia grosvenorii (LHG) is widely used as a medicinal and edible material around the world. The objective of this study was to develop an effective method for the authentication of the geographical origin of LHG in its main producing area Guangxi, China, which is identified as Chinese Protected Designation of Origin product, against other producing regions in China. The content of 14 elements (K, Na, Ca, P, Mg, Al, B, Ba, Cu, Fe, Mn, Ni, Zn, and Sr) of 114 LHG samples was determined by inductively coupled plasma optical emission spectrometry. Multivariate analysis was then performed to classify the geographical origin of LHG samples. The contents of multielement display an obvious trend of clustering according to the geographical origin of LHG samples based on radar plot and principal component analysis. Finally, three supervised statistical techniques, including linear discriminant analysis (LDA), k-nearest neighbours (k-NN), and support vector machine (SVM), were applied to develop classification models. Finally, 40 unknown LHG samples were used to evaluate the predictive ability of model and discrimination rate of 100%, 97.5% and 100% were obtained for LDA, k-NN, and SVM, respectively. This study indicated that it is feasible to attribute unknown LHG samples to its geographical origin based on its multielement content coupled with chemometric techniques.


2019 ◽  
Vol 20 (1) ◽  
pp. 103-117
Author(s):  
Nagaiah Pooveneswary ◽  
Ahmad Farid Bin Abu Bakar ◽  
Bong Chui Wei ◽  
Choon Weng Lee ◽  
Wang Ai Jun ◽  
...  

Abstract A study on contamination status and ecological risk of heavy metals in surface sediment at selected sites on Kelantan River and its nearshore area was carried out. Ten samples along Kelantan River and 25 samples from the nearshore were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES) to determine heavy metal concentrations. Sediment samples were also analyzed for particle size compositions, total organic matter and pH content. The average concentrations for As, Cd, Cr, Cu, Mn, Ni, Pb, Zn were 7.38, 1.31, 17.71, 11.40, 507.15, 5.97, 22.61, 32.95 mg/kg for riverine and 14.14, 4.59, 29.79, 14.07, 389.96, 9.65, 62.21, 41.04 mg/kg for nearshore samples respectively. The potential ecological risk index showed stations Bekok, Manek Urai, and RH under considerable risk followed by station Pasir Mas under moderate risk. The pollution load index classified four nearshore sites (KW10, KW17, KW18, KW37) as polluted. The geo-accumulation index (Igeo) categorized moderate contamination for Cd and Pb. The enrichment factor (EF) along the river categorized extremely high enrichment for Cd, and significant enrichment for As, Pb and Mn while Pb and As were under very high and significant enrichment in nearshore areas. Pb, Cu, Zn, As, Ni and Cr showed significant correlations with each other.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431
Author(s):  
Liangliang Huang ◽  
Saeed Rad ◽  
Li Xu ◽  
Liangying Gui ◽  
Xiaohong Song ◽  
...  

This research has focused on the source identification, concentration, and ecological risk assessment of eight heavy metals in the largest karst wetland (Huixian) of south China. Numerous samples from superficial soil and sediment within ten representative landuse types were collected and examined, and the results were analyzed using multiple methods. Single pollution index (Pi) results were underpinned by the Geoaccumulation index (Igeo) method, in which Cd was observed as the priority pollutant with the highest contamination degree in this area. As for the most polluted landuse type, via applying Nemerow’s synthetical contamination index (PN) and Potential ecological risk index (RI), the river and rape field posed the highest ecological risks, while moderate for the rest. To quantify the drivers of the contaminants, a principal component analysis (PCA) was carried out and weathering of the watershed’s parent carbonate rocks was found to be the main possible origin, followed by anthropogenic sources induced by agricultural fertilizer. Considering the impacts of these potentially toxic elements on public health, the results of this study are essential to take preventive actions for environmental protection and sustainable development in the region.


Author(s):  
Qing Ma ◽  
Lina Han ◽  
Jiquan Zhang ◽  
Yichen Zhang ◽  
Qiuling Lang ◽  
...  

Tianchi volcano is a dormant active volcano with a risk of re-eruption. Volcanic soil and volcanic ash samples were collected around the volcano and the concentrations of 21 metals (major and trace elements) were determined. The spatial distribution of the metals was obtained by inverse distance weight (IDW) interpolation. The metals’ sources were identified and their pollution levels were assessed to determine their potential ecological and human health risks. The metal concentrations were higher around Tianchi and at the north to the west of the study area. According to the geo-accumulation index (Igeo), enrichment factor (EF) and contamination factor (CF) calculations, Zn pollution was high in the study area. Pearson’s correlation analysis and principal component analysis showed that with the exception of Fe, Mn and As, the metals that were investigated (Al, K, Ca, Na, Mg, Ti, Cu, Pb, Zn, Cr, Ni, Ba, Ga, Li, Co, Cd, Sn, Sr) were mostly naturally derived. A small proportion of Li, Pb and Zn may have come from vehicle traffic. There is no potential ecological risk and non-carcinogenic risk because of the low concentrations of the metals; however, it is necessary to pay attention to the carcinogenic risk of Cr and As in children.


2016 ◽  
Vol 12 (2) ◽  
pp. 142
Author(s):  
Novi Anitra ◽  
Barlah Rumhayati ◽  
Catur Retnaningdyah

<p>Tujuan dari penelitian ini adalah mengevaluasi potensi sedimen perairan di wilayah reklamasi lumpur Lapindo sebagai sumber kontaminan logam berat (Pb, Cu, Zn) di badan air muara Sungai Porong, Kabupaten Sidoarjo. Evaluasi dilakukan dengan menentukan nilai faktor kontaminasi (<em>Contamination Factor,</em> <em>CF</em>) dan kode penilaian resiko (<em>Risk Assessment Code, RAC) </em>berdasarkan konsentrasi fraksi geokimia logam berat dalam sedimen. Fraksi logam berat ditentukan dengan metode ekstraksi bertahap (<em>sequential extraction</em>) BCR dimodifikasi oleh Chakraborty. Sampel sedimen diambil pada dua lokasi di muara Sungai Porong, yaitu pada lokasi 1 yaitu 7°34'26.76" LS, 112°52'53.76" BT dan lokasi 2 yaitu 7°33'31.35" LS, 112°51'05.56"BT. Sampel diambil dengan menggunakan <em>Eickman Grab sampler</em>, disimpan dalam wadah gelap pada suhu 4<sup>0</sup>C. Konsentrasi logam berat ditentukan dengan Spektrofotometri Serapan Atom. Hasil penelitian menunjukkan bahwa pada kedua lokasi nilai CF(Cu) lebih tinggi dibandingkan CF(Pb) dan CF(Zn). Hal ini menunjukkan bahwa Cu memiliki waktu retensi lebih singkat dibandingkan kedua logam lainnya dalam sedimen. Dengan kata lain, Cu lebih mudah terlepas dari sedimen dan menuju badan air sehingga dapat mengkontaminasi badan air. Berdasarkan nilai RAC, sedimen di lokasi 2 memiliki potensi lebih besar melepaskan logam Cu dalam  fraksi 1 (fraksi logam berat terlarut dalam air pori sedimen) dan fraksi 2 (fraksi logam berat mudah tertukar dan dalam bentuk karbonat) yang dapat dimanfaatkan langsung oleh biota di badan air. Dapat disimpulkan bahwa meskipun mangrove yang ditanam di wilayah reklamasi Lumpur Lapindo dapat mengabsorpsi logam berat tetapi sedimen perairan di wilayah tersebut memiliki potensi sebagai sumber kontaminan Cu, terutama di wilayah reklamasi yang berhubungan dengan laut.</p>


2021 ◽  
Vol 52 (4) ◽  
pp. 868-875
Author(s):  
Aweez & et al.

The aim of this study was to application of some single and integrated index equation to assess heavy metal in different soil within Erbil governorate. The 15 different locations (Bahare new, Newroz, New Hawler, Hesarok, Azadi1, Zen city, Atconz city, Pank village, Binaslawa, Darato, Qushtapa, Shaways, Kasnazan, Bahirka, Pirzin) were specifically selected to identify the effects of traffic activities on soil properties. Different heavy metal distribution patterns (As, Cd, Cu, Cr and Zn) were determined from distance 5, 25, 50m roadside. Soil pollution was assessed using many indices including: contamination factor (CF), degree of contamination (Cdeg), Ecological Risk Factor and Potential Ecological Risk Index.The results showed that concentrations of As, Cd, Cr, Cu, and Zn in street dust ranged from (4.60, 1.80, 217.83, 62.14 and 215.18) mg.kg-1 which recorded in Qushtapa, Kasnazan, Atconze city, Hasarok5 and Zen city respectively. The contamination factor  and degree of contamination of  the trace elements As, Cd, Cr, Cu ,and Zn of soil samples was indicating considerable contamination factor for Qushtapa moderate contamination factor for Kasnazan, while Atconze city, Hasarok5, Zen city showed very high contamination factor, while degree of contamination considerable low degree of contamination. According to the ecological risk factor and RI results Qwshtapa was indicate as low potential ecological risk, Kasnazan had moderate potential ecological risk while Hasarok5 and Zen city considerable high potential ecological risk, except Atconze considerable very high ecological risk, on the other hand for RI index shown considerable very high ecological risk recorded in Hasarok 5 soil samples.


2018 ◽  
Vol 6 (1) ◽  
pp. 108 ◽  
Author(s):  
Ram Proshad ◽  
Md. Saiful Islam ◽  
Tapos Kormoker

This study was conducted to assess the ecological risk of heavy metals in soils collected from the industrial vicinity of Tangail district in Bangladesh. In this study, the levels of six heavy metals namely chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), cadmium (Cd), and lead (Pb) in 15 sampling sites around the industrial vicinity of Tangail district in Bangladesh were assessed. The mean concentration of Cr, Ni, Cu, As, Cd and Pb in studied soils were 11.56, 23.92, 37.27, 6.11, 2.01, and 17.46 mg/kg, respectively. Certain indices, including the enrichment factor (EF), contamination factor (Cif), geoaccumulation index (Igeo), pollution load index (PLI), toxic unit analysis, and principal component analysis (PCA) were used to assess the ecological risk. The enrichment factor of all the studied metals for all sampling sites were in the descending order of Cd > Cu > As > Pb >Ni > Cr. The contamination factor values revealed that the studied soils were highly impacted by Cd. The pollution load index (PLI) values of Cd were higher than 1, indicating the progressive deterioration of soil due to Cd contamination. In the context of potential ecological risk (PER), soils from all sampling sites showed moderate to very high potential ecological risk.


Sign in / Sign up

Export Citation Format

Share Document