scholarly journals Combinations of Epidemiological and Experimental Studies in Air Pollution Research: A Narrative Review

Author(s):  
Hannah Weisenberg ◽  
Tianyu Zhao ◽  
Joachim Heinrich

Scientific literature is evolving to include more systematic reviews that encompass epidemiological and experimental papers so that the whole picture can be examined. The aim of this narrative review is to bridge that gap by combining epidemiological and experimental studies based on the same setting: Examples of Bitterfeld, Utah Valley, Beijing Olympic Games, and Viadana. This review looks at four examples that incorporate multiple epidemiological and experimental papers about air pollution exposure and health effects. The Bitterfeld (spatial) and Utah Valley (temporal) examples showed that particle composition causes the biggest difference in lung injury. In Beijing, a temporal difference of before/after and during the Olympics showed that traffic and industry air pollution-related health effects like lung cancer and cardiovascular disease could be reduced by improvement of air quality. The Viadana example showed a spatial difference in respiratory injury caused by particle composition and interactions with genotoxicity. Combining experimental and epidemiological methods gives a more in-depth look into the whole picture of exposure and health effects. Our review exemplifies the strength of this strategy and encourages further use of it.

Author(s):  
Zielinska ◽  
Hamulka

Air pollution is a major social, economic, and health problem around the world. Children are particularly susceptible to the negative effects of air pollution due to their immaturity and excessive growth and development. The aims of this narrative review were to: (1) summarize evidence about the protective effects of breastfeeding on the adverse health effects of air pollution exposure, (2) define and describe the potential mechanisms underlying the protective effects of breastfeeding, and (3) examine the potential effects of air pollution on breastmilk composition and lactation. A literature search was conducted using electronic databases. Existing evidence suggests that breastfeeding has a protective effect on adverse outcomes of indoor and outdoor air pollution exposure in respiratory (infections, lung function, asthma symptoms) and immune (allergic, nervous and cardiovascular) systems, as well as under-five mortality in both developing and developed countries. However, some studies reported no protective effect of breastfeeding or even negative effects of breastfeeding for under-five mortality. Several possible mechanisms of the breastfeeding protective effect were proposed, including the beneficial influence of breastfeeding on immune, respiratory, and nervous systems, which are related to the immunomodulatory, anti-inflammatory, anti-oxidant, and neuroprotective properties of breastmilk. Breastmilk components responsible for its protective effect against air pollutants exposure may be long chain polyunsaturated fatty acids (LC PUFA), antioxidant vitamins, carotenoids, flavonoids, immunoglobins, and cytokines, some of which have concentrations that are diet-dependent. However, maternal exposure to air pollution is related to increased breastmilk concentrations of pollutants (e.g., Polycyclic aromatic hydrocarbons (PAHs) or heavy metals in particulate matter (PM)). Nonetheless, environmental studies have confirmed that breastmilk’s protective effects outweigh its potential health risk to the infant. Mothers should be encouraged and supported to breastfeed their infants due to its unique health benefits, as well as its limited ecological footprint, which is associated with decreased waste production and the emission of pollutants.


Author(s):  
Maria-Viola Martikainen ◽  
Päivi Aakko-Saksa ◽  
Lenie van den Broek ◽  
Flemming R. Cassee ◽  
Roxana O. Carare ◽  
...  

The adverse effects of air pollutants on the respiratory and cardiovascular systems are unquestionable. However, in recent years, indications of effects beyond these organ systems have become more evident. Traffic-related air pollution has been linked with neurological diseases, exacerbated cognitive dysfunction, and Alzheimer’s disease. However, the exact air pollutant compositions and exposure scenarios leading to these adverse health effects are not known. Although several components of air pollution may be at play, recent experimental studies point to a key role of ultrafine particles (UFPs). While the importance of UFPs has been recognized, almost nothing is known about the smallest fraction of UFPs, and only >23 nm emissions are regulated in the EU. Moreover, the role of the semivolatile fraction of the emissions has been neglected. The Transport-Derived Ultrafines and the Brain Effects (TUBE) project will increase knowledge on harmful ultrafine air pollutants, as well as semivolatile compounds related to adverse health effects. By including all the major current combustion and emission control technologies, the TUBE project aims to provide new information on the adverse health effects of current traffic, as well as information for decision makers to develop more effective emission legislation. Most importantly, the TUBE project will include adverse health effects beyond the respiratory system; TUBE will assess how air pollution affects the brain and how air pollution particles might be removed from the brain. The purpose of this report is to describe the TUBE project, its background, and its goals.


2001 ◽  
Vol 73 (6) ◽  
pp. 933-958 ◽  
Author(s):  
Ole Hertel ◽  
Frank A. A. M. De Leeuw ◽  
Steen Solvang Jensen ◽  
David Gee ◽  
Olf Herbarth ◽  
...  

_Human exposure to outdoor air pollution is believed to cause severe health effects, especially in urban areas where pollution levels often are high, because of the poor dispersion conditions and high density of pollution sources. Many factors influence human health, and a good assessment of human air pollution exposure is, therefore, crucial for a proper determination of possible links between air pollution and health effects. Assessment of human exposure is, however, not straightforward, and this is the background for the present paper, which recommends how to carry out such assessments. Assessment of human exposure to air pollution may be carried out by use of:categorical classification, application of biomarkers, analysis of air pollution data from routine monitoring networks, personal portable exposure monitors, or application of mathematical air pollution exposure models. The categorical classification is a crude indirect method based on indicators of exposure such as type of residence, type of job, presence of indoor sources, etc. Categorical classification is generally inadequate for application in air pollution epidemiology. Biomarkers can be a strong instrument in assessment of health effects and provide information about air pollution exposure and dose. Use of biomarkers is, therefore, particularly useful when applied in combination with exposure assessment through one of the methods 3 to 5. The main focus of this paper is on these three methods for determination of human air pollution exposure. The optimal solution is clearly a combination of methods 2 to 5, but the available resources often set a limit to how far the assessment is carried out, and the choice of strategy will, therefore, often be very important for the outcome of the final study. This paper describes how these approaches may be applied and outlines advantages and disadvantages of the approaches used individually and in combination. Furthermore, some examples of specific applications in Denmark and the Netherlands are given for illustration.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Panayiotis Kouis ◽  
Stefania I. Papatheodorou ◽  
Maria G. Kakkoura ◽  
Nicos Middleton ◽  
Emmanuel Galanakis ◽  
...  

Abstract Background Desert dust events in Mediterranean countries, originating mostly from the Sahara and Arabian deserts, have been linked to climate change and are associated with significant increase in mortality and hospital admissions from respiratory causes. The MEDEA clinical intervention study in children with asthma is funded by EU LIFE+ program to evaluate the efficacy of recommendations aiming to reduce exposure to desert dust and related health effects. Methods This paper describes the design, methods, and challenges of the MEDEA childhood asthma study, which is performed in two highly exposed regions of the Eastern Mediterranean: Cyprus and Greece-Crete. Eligible children are recruited using screening surveys performed at primary schools and are randomized to three parallel intervention groups: a) no intervention for desert dust events, b) interventions for outdoor exposure reduction, and c) interventions for both outdoor and indoor exposure reduction. At baseline visits, participants are enrolled on MEDena® Health-Hub, which communicates, alerts and provides exposure reduction recommendations in anticipation of desert dust events. MEDEA employs novel environmental epidemiology and telemedicine methods including wearable GPS, actigraphy, health parameters sensors as well as indoor and outdoor air pollution samplers to assess study participants’ compliance to recommendations, air pollutant exposures in homes and schools, and disease related clinical outcomes. Discussion The MEDEA study evaluates, for the first time, interventions aiming to reduce desert dust exposure and implement novel telemedicine methods in assessing clinical outcomes and personal compliance to recommendations. In Cyprus and Crete, during the first study period (February–May 2019), a total of 91 children participated in the trial while for the second study period (February–May 2020), another 120 children completed data collection. Recruitment for the third study period (February–May 2021) is underway. In this paper, we also present the unique challenges faced during the implementation of novel methodologies to reduce air pollution exposure in children. Engagement of families of asthmatic children, schools and local communities, is critical. Successful study completion will provide the knowledge for informed decision-making both at national and international level for mitigating the health effects of desert dust events in South-Eastern Europe. Trial registration ClinicalTrials.gov: NCT03503812, April 20, 2018.


Sign in / Sign up

Export Citation Format

Share Document