scholarly journals Leveraging Machine Learning Techniques and Engineering of Multi-Nature Features for National Daily Regional Ambulance Demand Prediction

Author(s):  
Adrian Xi Lin ◽  
Andrew Fu Wah Ho ◽  
Kang Hao Cheong ◽  
Zengxiang Li ◽  
Wentong Cai ◽  
...  

The accurate prediction of ambulance demand provides great value to emergency service providers and people living within a city. It supports the rational and dynamic allocation of ambulances and hospital staffing, and ensures patients have timely access to such resources. However, this task has been challenging due to complex multi-nature dependencies and nonlinear dynamics within ambulance demand, such as spatial characteristics involving the region of the city at which the demand is estimated, short and long-term historical demands, as well as the demographics of a region. Machine learning techniques are thus useful to quantify these characteristics of ambulance demand. However, there is generally a lack of studies that use machine learning tools for a comprehensive modeling of the important demand dependencies to predict ambulance demands. In this paper, an original and novel approach that leverages machine learning tools and extraction of features based on the multi-nature insights of ambulance demands is proposed. We experimentally evaluate the performance of next-day demand prediction across several state-of-the-art machine learning techniques and ambulance demand prediction methods, using real-world ambulatory and demographical datasets obtained from Singapore. We also provide an analysis of this ambulatory dataset and demonstrate the accuracy in modeling dependencies of different natures using various machine learning techniques.

10.2196/20995 ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. e20995
Author(s):  
Debbie Rankin ◽  
Michaela Black ◽  
Bronac Flanagan ◽  
Catherine F Hughes ◽  
Adrian Moore ◽  
...  

Background Machine learning techniques, specifically classification algorithms, may be effective to help understand key health, nutritional, and environmental factors associated with cognitive function in aging populations. Objective This study aims to use classification techniques to identify the key patient predictors that are considered most important in the classification of poorer cognitive performance, which is an early risk factor for dementia. Methods Data were used from the Trinity-Ulster and Department of Agriculture study, which included detailed information on sociodemographic, clinical, biochemical, nutritional, and lifestyle factors in 5186 older adults recruited from the Republic of Ireland and Northern Ireland, a proportion of whom (987/5186, 19.03%) were followed up 5-7 years later for reassessment. Cognitive function at both time points was assessed using a battery of tests, including the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), with a score <70 classed as poorer cognitive performance. This study trained 3 classifiers—decision trees, Naïve Bayes, and random forests—to classify the RBANS score and to identify key health, nutritional, and environmental predictors of cognitive performance and cognitive decline over the follow-up period. It assessed their performance, taking note of the variables that were deemed important for the optimized classifiers for their computational diagnostics. Results In the classification of a low RBANS score (<70), our models performed well (F1 score range 0.73-0.93), all highlighting the individual’s score from the Timed Up and Go (TUG) test, the age at which the participant stopped education, and whether or not the participant’s family reported memory concerns to be of key importance. The classification models performed well in classifying a greater rate of decline in the RBANS score (F1 score range 0.66-0.85), also indicating the TUG score to be of key importance, followed by blood indicators: plasma homocysteine, vitamin B6 biomarker (plasma pyridoxal-5-phosphate), and glycated hemoglobin. Conclusions The results suggest that it may be possible for a health care professional to make an initial evaluation, with a high level of confidence, of the potential for cognitive dysfunction using only a few short, noninvasive questions, thus providing a quick, efficient, and noninvasive way to help them decide whether or not a patient requires a full cognitive evaluation. This approach has the potential benefits of making time and cost savings for health service providers and avoiding stress created through unnecessary cognitive assessments in low-risk patients.


Author(s):  
Sherri Rose

Abstract The field of health services research is broad and seeks to answer questions about the health care system. It is inherently interdisciplinary, and epidemiologists have made crucial contributions. Parametric regression techniques remain standard practice in health services research with machine learning techniques currently having low penetrance in comparison. However, studies in several prominent areas, including health care spending, outcomes and quality, have begun deploying machine learning tools for these applications. Nevertheless, major advances in epidemiological methods are also as yet underleveraged in health services research. This article summarizes the current state of machine learning in key areas of health services research, and discusses important future directions at the intersection of machine learning and epidemiological methods for health services research.


2020 ◽  
Author(s):  
Akshay Kumar ◽  
Farhan Mohammad Khan ◽  
Rajiv Gupta ◽  
Harish Puppala

AbstractThe outbreak of COVID-19 is first identified in China, which later spread to various parts of the globe and was pronounced pandemic by the World Health Organization (WHO). The disease of transmissible person-to-person pneumonia caused by the extreme acute respiratory coronavirus 2 syndrome (SARS-COV-2, also known as COVID-19), has sparked a global warning. Thermal screening, quarantining, and later lockdown were methods employed by various nations to contain the spread of the virus. Though exercising various possible plans to contain the spread help in mitigating the effect of COVID-19, projecting the rise and preparing to face the crisis would help in minimizing the effect. In the scenario, this study attempts to use Machine Learning tools to forecast the possible rise in the number of cases by considering the data of daily new cases. To capture the uncertainty, three different techniques: (i) Decision Tree algorithm, (ii) Support Vector Machine algorithm, and (iii) Gaussian process regression are used to project the data and capture the possible deviation. Based on the projection of new cases, recovered cases, deceased cases, medical facilities, population density, number of tests conducted, and facilities of services, are considered to define the criticality index (CI). CI is used to classify all the districts of the country in the regions of high risk, low risk, and moderate risk. An online dashpot is created, which updates the data on daily bases for the next four weeks. The prospective suggestions of this study would aid in planning the strategies to apply the lockdown/ any other plan for any country, which can take other parameters to define the CI.


Author(s):  
Afshin Rahimi ◽  
Mofiyinoluwa O. Folami

As the number of satellite launches increases each year, it is only natural that an interest in the safety and monitoring of these systems would increase as well. However, as a system becomes more complex, generating a high-fidelity model that accurately describes the system becomes complicated. Therefore, imploring a data-driven method can provide to be more beneficial for such applications. This research proposes a novel approach for data-driven machine learning techniques on the detection and isolation of nonlinear systems, with a case-study for an in-orbit closed loop-controlled satellite with reaction wheels as actuators. High-fidelity models of the 3-axis controlled satellite are employed to generate data for both nominal and faulty conditions of the reaction wheels. The generated simulation data is used as input for the isolation method, after which the data is pre-processed through feature extraction from a temporal, statistical, and spectral domain. The pre-processed features are then fed into various machine learning classifiers. Isolation results are validated with cross-validation, and model parameters are tuned using hyperparameter optimization. To validate the robustness of the proposed method, it is tested on three characterized datasets and three reaction wheel configurations, including standard four-wheel, three-orthogonal, and pyramid. The results prove superior performance isolation accuracy for the system under study compared to previous studies using alternative methods (Rahimi & Saadat, 2019, 2020).


Author(s):  
RajKishore Sahni

The upsurge in the volume of unwanted emails called spam has created an intense need for the development of more dependable and robust antispam filters. Machine learning methods of recent are being used to successfully detect and filter spam emails. We present a systematic review of some of the popular machine learning based email spam filtering approaches. Our review covers survey of the important concepts, attempts, efficiency, and the research trend in spam filtering. The preliminary discussion in the study background examines the applications of machine learning techniques to the email spam filtering process of the leading internet service providers (ISPs) like Gmail, Yahoo and Outlook emails spam filters. Discussion on general email spam filtering process, and the various efforts by different researchers in combating spam through the use machine learning techniques was done. Our review compares the strengths and drawbacks of existing machine learning approaches and the open research problems in spam filtering. We recommended deep learning and deep adversarial learning as the future techniques that can effectively handle the menace of spam emails


2020 ◽  
Vol 69 ◽  
pp. 765-806
Author(s):  
Senka Krivic ◽  
Michael Cashmore ◽  
Daniele Magazzeni ◽  
Sandor Szedmak ◽  
Justus Piater

We present a novel approach for decreasing state uncertainty in planning prior to solving the planning problem. This is done by making predictions about the state based on currently known information, using machine learning techniques. For domains where uncertainty is high, we define an active learning process for identifying which information, once sensed, will best improve the accuracy of predictions. We demonstrate that an agent is able to solve problems with uncertainties in the state with less planning effort compared to standard planning techniques. Moreover, agents can solve problems for which they could not find valid plans without using predictions. Experimental results also demonstrate that using our active learning process for identifying information to be sensed leads to gathering information that improves the prediction process.


Sign in / Sign up

Export Citation Format

Share Document