scholarly journals Evaluation of Inflammation by Cytokine Production Following Combined Exposure to Ultraviolet and Radiofrequency Radiation of Mobile Phones on 3D Reconstructed Human Skin In Vitro

Author(s):  
Zsófia Szilágyi ◽  
Zsuzsanna Németh ◽  
József Bakos ◽  
Péter Pál Necz ◽  
Anna Sáfár ◽  
...  

The absorption of exposure to radiofrequency (RF) emitted by wireless devices leads to a high specific absorption rate in the skin. Ultraviolet (UV) radiation can induce several damages to the skin. The aim of this study was to examine whether combined, consecutive exposure to solar UV radiation and 1950 MHz RF exposure of third generation (3G) mobile system have any effect on inflammation processes in the skin. Under in vitro experiments, the inflammation process was examined by cytokines (IL-1α, IL-6, and IL-8) and MMP-1 enzyme secretion on 3D full thickness human skin model. The RF exposure was applied before or after UV irradiation, in order to study either the possible cooperative or protective effects of exposure to RF and UV. We did not find changes in cytokines due to exposure to RF alone. The RF exposure did not enhance the effects of UV radiation. There was a statistically not-significant decrease in cytokines when the skin tissues were pre-exposed to RF before being exposed to 4 standard erythemal dose (SED) UV compared to UV exposure alone. We found that RF exposure reduced the previously UV-treated MMP-1 enzyme concentration. This study might support the evaluation of the effects on the skin exposed to microwave radiation of 5G mobile technology.

Biomedicines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 77 ◽  
Author(s):  
Prasedya ◽  
Syafitri ◽  
Geraldine ◽  
Hamdin ◽  
Frediansyah ◽  
...  

Sunscreens today contain several synthetic UV (Ultraviolet) filter molecules to protect the skin epidermis from UV radiation damage. However, these molecules may create several negative effects on human skin. Due to this condition, there is an increase in the development of natural products to replace uses of these synthetic chemicals. Brown macroalgae Sargassum has been recently studied for its photoprotective activities. The purpose of this study is to investigate photoprotective activity of one of most abundant Sargassum species in Lombok coast; Sargassum cristaefolium. Spectrophotometry analysis with UV-VIS revealed the UV spectra absorbing capability of Sargassum cristaefolium (SC) in the UVA spectrum range (314–400 nm). Furthermore, spectrometry analyses with LC-MS revealed the existence of UV absorbing compound MAA-palythene. In correlation, SC ethanol extracts also demonstrate that it could protect DNA from UVA irradiation as analyzed in vitro in HeLa cell model. The effects of SC on UVA exposed-dorsal mice skin have also shown interesting results, as mice pretreated with SC before UVA exposure showed protective activity on the epidermal integrity similar as positive control. Whereas, UV exposed mice without SC or commercial products resulted in increased epidermal thickness, which is the common parameter of skin photoaging. In addition, pretreated mice with SC also show protective effects in the formation of collagen connective tissues. Overall, current results show promising photoprotective activity of SC against UV radiation. More advanced investigations of SC as a potential photoprotective agent would be reasonable for development of macroalgae-based natural skin protection products.


2012 ◽  
Vol 7 (1) ◽  
pp. 98-103
Author(s):  
Irina Terenetskaya ◽  
Tetiana Orlova ◽  
Pavel Kapinos

Vitamin D which is formed upon UV solar radiation in human skin is essential in many physiological functions. To estimate beneficial vitamin-D-synthetic capacity of sunlight a bio-equivalent UV dosimeter that is based on the same molecular photochemistry from which vitamin D is photosynthesized in human skin has been developed. The examples of an in situ monitoring of the vitamin-D-synthetic capacity of sunlight using an in vitro model of vitamin D synthesis are presented, and various operational principles of the UV biodosimeter are discussed. In addition, reliable algorithm is presented for direct calculation of previtamin D3 accumulation using the photoreaction mathematical model with solar UV spectra as input data. Critical dependence of previtamin D3 accumulation on cloudiness and aerosols is demonstrated.


Mutagenesis ◽  
2019 ◽  
Author(s):  
Thomas R Downs ◽  
Volker M Arlt ◽  
Brenda C Barnett ◽  
Ryan Posgai ◽  
Stefan Pfuhler

Abstract In vitro genotoxicity assays utilising human skin models are becoming important tools for the safety assessment of chemicals whose primary exposure is via the dermal route. In order to explore metabolic competency and inducibility of CYP450 activating enzymes, 3D reconstructed human skin tissues were topically treated with 2-acetylaminofluorene (2-AAF) and its genotoxic metabolites, N-hydroxy-2-acetylaminofluorene (N-OH-2-AAF) and N-hydroxy-2-aminofluorene (N-OH-2-AF), which primarily cause DNA damage by forming DNA adducts. 2-AAF did not increase DNA damage measured in the reconstructed skin micronucleus (RSMN) assay when administered in multiple applications at 24 h intervals but was detected in the skin comet assay in the presence of the DNA polymerase inhibitor aphidicolin (APC). Similarly, no increase was found with N-OH-2-AAF in the RSMN assay after multiple treatments whereas a single 3 h exposure to N-OH-2-AAF caused a large dose-related increase in the skin comet assay. A significant increase in the RSMN assay was only obtained with the highly reactive N-OH-2-AF metabolite after multiple treatments over 72 h, whereas N-OH-2-AF caused a strong increase after a single 3 h exposure in the skin comet assay. In support of these results, DNA adduct formation, measured by the 32P-postlabelling assay, was examined. Adduct levels after 2-AAF treatment for 3 h were minimal but increased >10-fold after multiple exposures over 48 h, suggesting that enzyme(s) that metabolise 2-AAF are induced in the skin models. As expected, a single 3 h exposure to N-OH-2-AAF and N-OH-2-AF resulted in adduct levels that were at least 10-fold greater than those after multiple exposures to 2-AAF despite ~100-fold lower tested concentrations. Our results demonstrate that DNA damage caused by 2-AAF metabolites is more efficiently detected in the skin comet assay than the RSMN assay and after multiple exposures and enzyme induction, 2-AAF-induced DNA damage can be detected in the APC-modified comet assay.


2000 ◽  
Vol 142 (2) ◽  
pp. 210-222 ◽  
Author(s):  
P. Eves ◽  
C. Layton ◽  
S. Hedley ◽  
R.A. Dawson ◽  
M. Wagner ◽  
...  

2019 ◽  
Vol 85 (18) ◽  
Author(s):  
Solange Torres ◽  
Mariela González-Ramírez ◽  
Javiera Gavilán ◽  
Cristian Paz ◽  
Goetz Palfner ◽  
...  

ABSTRACT Many fungi are thought to have developed morphological and physiological adaptations to cope with exposure to UV-B radiation, but in most species, such responses and their protective effects have not been explored. Here, we study the adaptive response to UV-B radiation in the widespread, saprotrophic fungus Serpula himantioides, frequently found colonizing coniferous wood in nature. We report the morphological and chemical responses of S. himantioides to controlled intensities of UV-B radiation, under in vitro culture conditions. Ultraviolet radiation induced a decrease in the growth rate of S. himantioides but did not cause gross morphological changes. Instead, we observed accumulation of pigments near the cell wall with increasing intensities of UV-B radiation. Nuclear magnetic resonance (NMR) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses revealed that xerocomic acid was the main pigment present, both before and after UV-B exposure, increasing from 7 mg/liter to 15 mg/liter after exposure. We show that xerocomic acid is a photoprotective metabolite with strong antioxidant abilities, as evidenced by DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt], and oxygen radical absorbance capacity (ORAC) assays. Finally, we assessed the capacity of xerocomic acid as a photoprotective agent on HEK293 cells and observed better photoprotective properties than those of β-carotene. Xerocomic acid is therefore a promising natural product for development as a UV-protective ingredient in cosmetic and pharmaceutical products. IMPORTANCE Our study shows the morphological and chemical responses of S. himantioides to controlled doses of UV-B radiation under in vitro culture conditions. We found that increased biosynthesis of xerocomic acid was the main strategy adopted by S. himantioides against UV-B radiation. Xerocomic acid showed strong antioxidant and photoprotective abilities, which has not previously been reported. Our results indicate that upon UV-B exposure, S. himantioides decreases its hyphal growth rate and uses this energy instead to increase the biosynthesis of xerocomic acid, which is allocated near the cell wall. This metabolic switch likely allows xerocomic acid to efficiently defend S. himantioides from UV radiation through its antioxidant and photoprotective properties. The findings further suggest that xerocomic acid is a promising candidate for development as a cosmetic ingredient to protect against UV radiation and should therefore be investigated in depth in the near future both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document