scholarly journals An Electromyographic Analysis of Lateral Raise Variations and Frontal Raise in Competitive Bodybuilders

Author(s):  
Giuseppe Coratella ◽  
Gianpaolo Tornatore ◽  
Stefano Longo ◽  
Fabio Esposito ◽  
Emiliano Cè

The present study examined the muscle activation in lateral raise with humerus rotated externally (LR-external), neutrally (LR-neutral), internally (LR-internal), with flexed elbow (LR-flexed) and frontal raise during both the concentric and eccentric phase. Ten competitive bodybuilders performed the exercises. Normalized surface electromyographic root mean square (sEMG RMS) was obtained from anterior, medial, and posterior deltoid, pectoralis major, upper trapezius, and triceps brachii. During the concentric phase, anterior deltoid and posterior deltoid showed greater sEMG RMS in frontal raise (effect size (ES)-range: 1.78/9.25)) and LR-internal (ES-range: 10.79/21.34), respectively, vs. all other exercises. Medial deltoid showed greater sEMG RMS in LR-neutral than LR-external (ES: 1.47 (95% confidence-interval—CI: 0.43/2.38)), frontal raise (ES: 10.28(95% CI: 6.67/13.01)), and LR-flexed (ES: 6.41(95% CI: 4.04/8.23)). Pectoralis major showed greater sEMG RMS in frontal raise vs. all other exercises (ES-range: 17.2/29.5), while upper trapezius (ES-range: 2.66/7.18) and triceps brachii (ES-range: 0.41/3.31) showed greater sEMG RMS in LR-internal vs. all other exercises. Similar recruitment patterns were found during the eccentric phase. When humerus rotates internally, greater activation of posterior deltoid, triceps brachii, and upper trapezius occurs. Humerus external rotation increases the activation of anterior and medial deltoid. Frontal raise mainly activates anterior deltoid and pectoralis major. LR variations and frontal raise activate specifically shoulders muscles and should be proposed accordingly.

Author(s):  
Antonio Paoli ◽  
Laura Mancin ◽  
Matteo Saoncella ◽  
Davide Grigoletto ◽  
Francesco Q. Pacelli ◽  
...  

Different attentional foci may modify muscle activation during exercises. Our aim was to determine if it is possible to selectively activate the pectoralis major or triceps brachii muscles according to specific verbal instructions provided during the bench press exercise. 13 resistance-trained males (25.6±5.4 yrs, 182.7±9.1 cm, 86.4±9.7 kg) underwent an electromyographic signals acquisition of the sternocostal head, clavicular head of the pectoralis major, the anterior deltoid, and the long head of the triceps brachii (LT) during bench press exercise. Participants performed one non-instructed set (NIS) of 4 repetitions at 50% 1-repetition maximum (1-RM) and one NIS of 4 repetitions at 80% 1-RM. Four additional sets of 4 repetitions at 50% and 80% 1-RM were randomly performed with verbal instructions to isolate the chest muscles (chest instructed set, CIS) or to isolate the triceps muscles (triceps instructed set, TIS). Participants showed significantly higher LT activation during TIS compared to non-instructed set both at 50% (p=0.0199) and 80% 1-RM (p=0.0061) respectively. TIS elicited a significant (p=0.0250) higher activation of LT compared to CIS. Our results suggest that verbal instructions seem to be effective for increasing activity of the triceps brachii but not the pectoralis major during the bench press.


2020 ◽  
Vol 15 (9) ◽  
pp. 1252-1259
Author(s):  
Marcelo Danillo Matos dos Santos ◽  
Felipe J. Aidar ◽  
Raphael Fabrício de Souza ◽  
Jymmys Lopes dos Santos ◽  
Andressa da Silva de Mello ◽  
...  

Purpose: To verify the effects of using different grip widths in bench press performance in Paralympic powerlifting athletes. Methods: Twelve experienced Paralympic powerlifting male athletes (25.40 [3.30] y, 70.30 [12.15] kg) participated in the study. Maximal dynamic strength and maximal isometric strength (MIS) were determined. Then, mean propulsive velocity (MPV) using 25%, 50%, and 100% of maximal dynamic strength load and time to achieve 30%, 50%, and 100% of MIS were assessed with 4 different grip widths, specifically the biacromial distance (BAD: 42.83 [12.84] cm), 1.3 BAD (55.68 [16.70] cm), 1.5 BAD (63.20 [18.96] cm), and 81 cm. Electromyographic analysis was performed during MIS assessment in the pectoralis major sternal portion, anterior deltoid, triceps brachii long head, and pectoralis major clavicular portion. Results: Large differences were found between MPV performed with different grip widths using 25% of maximal dynamic strength load (P = .02, ). The 1.5 BAD grip tended to show greater force generation and MPV. Moreover, the time needed to achieve 30%, 50%, and 100% of MIS differed between grip widths (P = .03, ), with the lowest values obtained in the 1.5 BAD. Despite the nonstatistical differences that were found, grip widths caused moderate effects on muscle myoelectric activation, showing greater values for pectoralis major clavicular portion and pectoralis major sternal portion, for the 1.3 BAD and 1.5 BAD, respectively. The 1.5 BAD the grip width tended to show greater MPV values and faster contractile responses. Conclusions: These results highlighted the importance of choosing the specific grip width for improvement of performance in Paralympic powerlifting athletes, by increasing velocity of movement and force production in a shorter time, with greater activation of primary muscles.


2014 ◽  
Vol 44 (1) ◽  
pp. 203-210 ◽  
Author(s):  
Rafael Soncin ◽  
Juliana Pennone ◽  
Thiago M. Guimarães ◽  
Bruno Mezêncio ◽  
Alberto C. Amadio ◽  
...  

Abstract The purpose of this study was to investigate the effects of exercise order on electromyographic activity in different muscle groups among youth men with experience in strength training. Three sets of 8 RM were performed of each exercise in two sequences order: (a) sequence A: bench press, chest fly, shoulder press, shoulder abduction, close grip bench press and lying triceps extension; (b) sequence B: the opposite order. The electromyographic activity was analyzed in the sternocostal head of the pectoralis major, anterior deltoid, and long head triceps brachii, normalized for maximal voluntary isometric contraction. The muscles activity of the sternocostal head of the pectoralis major, anterior deltoid, and long head triceps brachii showed significant interaction between sequence and exercise. The sternocostal head of the pectoralis major showed considerably higher activity in sequence A (100.13 ± 13.56%) than sequence B (81.47 ± 13.09%) for the chest fly. The anterior deltoid showed significantly higher electromyographic activity in sequence B (86.81 ± 40.43%) than sequence A (66.15 ± 22.02%) for the chest fly, whereas for the lying triceps extension, the electromyographic activity was significantly higher in sequence A (53.89 ± 27.09%) than sequence B (34.32 ± 23.70%). For the long head triceps brachii, only the shoulder press showed differences between sequences (A = 52.43 ± 14.64 vs. B = 38.53 ± 16.26). The present study showed that the exercise order could modify the training results even though there was no alteration in volume and intensity of the exercise. These changes may result in different training adaptations.


2011 ◽  
Vol 46 (4) ◽  
pp. 349-357 ◽  
Author(s):  
Mithun Joshi ◽  
Charles A. Thigpen ◽  
Kevin Bunn ◽  
Spero G. Karas ◽  
Darin A. Padua

Context: Glenohumeral external rotation (GH ER) muscle fatigue might contribute to shoulder injuries in overhead athletes. Few researchers have examined the effect of such fatigue on scapular kinematics and muscle activation during a functional movement pattern. Objective: To examine the effects of GH ER muscle fatigue on upper trapezius, lower trapezius, serratus anterior, and infraspinatus muscle activation and to examine scapular kinematics during a diagonal movement task in overhead athletes. Setting: Human performance research laboratory. Design: Descriptive laboratory study. Patients or Other Participants: Our study included 25 overhead athletes (15 men, 10 women; age = 20 ± 2 years, height = 180 ± 11 cm, mass = 80 ± 11 kg) without a history of shoulder pain on the dominant side. Intervention(s): We tested the healthy, dominant shoulder through a diagonal movement task before and after a fatiguing exercise involving low-resistance, high-repetition, prone GH ER from 0° to 75° with the shoulder in 90° of abduction. Main Outcome Measure(s): Surface electromyography was used to measure muscle activity for the upper trapezius, lower trapezius, serratus anterior, and infraspinatus. An electromyographic motion analysis system was used to assess 3-dimensional scapular kinematics. Repeated-measures analyses of variance (phase × condition) were used to test for differences. Results: We found a decrease in ascending-phase and descending-phase lower trapezius activity (F1,25 = 5.098, P = .03) and an increase in descending-phase infraspinatus activity (F1,25 = 5.534, P = .03) after the fatigue protocol. We also found an increase in scapular upward rotation (F1,24 = 3.7, P = .04) postfatigue. Conclusions: The GH ER muscle fatigue protocol used in this study caused decreased lower trapezius and increased infraspinatus activation concurrent with increased scapular upward rotation range of motion during the functional task. This highlights the interdependence of scapular and glenohumeral force couples. Fatigue-induced alterations in the lower trapezius might predispose the infraspinatus to injury through chronically increased activation.


2014 ◽  
Vol 49 (5) ◽  
pp. 599-607 ◽  
Author(s):  
Masafumi Terada ◽  
Brian G. Pietrosimone ◽  
Phillip A. Gribble

Context: Few authors have assessed neuromuscular knee-stabilization strategies in individuals with chronic ankle instability (CAI) during functional activities. Objective: To investigate the influence of CAI on neuromuscular characteristics around the knee during a stop-jump task. Design: Case-control study. Setting: Research laboratory. Participants or Other Participants: A total of 19 participants with self-reported unilateral CAI and 19 healthy control participants volunteered for this study. Intervention(s): Participants performed double-legged, vertical stop-jump tasks onto a force plate, and we measured muscle activation around the knee of each limb. Main Outcome Measure(s): We calculated the integrated electromyography for the vastus medialis oblique, vastus lateralis, medial hamstrings, and lateral hamstrings muscles during the 100 ms before and after initial foot contacts with the force plate and normalized by the ensemble peak electromyographic value. Knee sagittal-plane kinematics were also analyzed during a stop-jump task. Results: Compared with control participants, the CAI group demonstrated greater prelanding integrated electromyographic activity of the vastus medialis oblique (CAI = 52.28 ± 11.25%·ms, control = 43.90 ± 10.13%·ms, t36 = 2.41, P = .021, effect size = 0.78, 95% confidence interval = 0.11, 1.43) and less knee-flexion angle at the point of initial foot contact (CAI = 7.81° ± 8.27°, control = 14.09° ± 8.7°, t36 = −2.28, P = .029, effect size = −0.74, 95% confidence interval = −1.38, −0.07) and at 100 ms post–initial foot contact (CAI = 51.36° ± 5.29°, control = 58.66° ± 7.66°, t36 = −3.42, P = .002, effect size = −1.11, 95% confidence interval = −1.77, −0.40). No significant results were noted for the other electromyographic measures. Conclusions: We found altered feed-forward patterns of the vastus medialis oblique and altered postlanding knee sagittal-plane kinematics in the CAI group. These observations may provide insight regarding sensorimotor characteristics that may be associated with CAI.


2017 ◽  
Vol 26 (4) ◽  
pp. 281-286 ◽  
Author(s):  
Rafaela J.B. Torres ◽  
André L.T. Pirauá ◽  
Vinícius Y.S. Nascimento ◽  
Priscila S. dos Santos ◽  
Natália B. Beltrão ◽  
...  

The aim of this study was to evaluate the acute effect of the use of stable and unstable surfaces on electromyography (EMG) activity and coactivation of the scapular and upper-limb muscles during the push-up plus (with full protraction of the scapula). Muscle activation of anterior deltoid (AD), posterior deltoid (PD), pectoralis major, biceps brachii (BB), triceps brachii (TB), upper trapezius (UT), middle trapezius (MT), lower trapezius (LT), and serratus anterior (SA) levels and coactivation index were determined by surface EMG in 20 young men during push-up plus performed on a stable and unstable condition (2 unstable devices applied to hands and feet). The paired t test and Cohen d were used for statistical analysis. The results showed that during the execution of the push-up plus on the unstable surface an increased EMG activity of the scapular stabilizing muscles (SA, MT, and LT) was observed, while AD and PD muscles showed a decrease. During exercise execution on the unstable surface there was a higher index of coactivation of the scapular muscles (SA–MT and UT–LT pairs). No significant differences were observed in TB–BB and AD–PD pairs. These results suggest that the push-up-plus exercise associated with unstable surfaces produced greater EMG activity levels and coactivation index of the scapular stabilizing muscle. On the other hand, the use of an unstable surface does not promote the same effect for the shoulder muscles.


2019 ◽  
Vol 28 (3) ◽  
pp. 272-277 ◽  
Author(s):  
Jun-Seok Kim ◽  
Moon-Hwan Kim ◽  
Duk-Hyun Ahn ◽  
Jae-Seop Oh

Context:A winged scapula (WS) is associated with faulty posture caused by weakness of the serratus anterior (SA), which mainly acts as a scapular stabilizer muscle. It is important to accurately assess and train the SA muscle with a focus on scapula stabilizers during musculoskeletal rehabilitation of individuals with a WS.Objective:The authors examined muscle activity in the SA and pectoralis major (PM), upper trapezius (UT), and anterior deltoid (AD) as well as shoulder protraction strength during isometric shoulder protraction in individuals with and without a WS.Design:Cross-sectional study.Setting:A clinical biomechanics laboratory.Participants:In total, 27 males with no shoulder, neck, or upper-extremity pain participated.Main Outcome Measures:Isometric shoulder protraction strength was collected and surface electromyography used to measure the activity of the SA, PM, UT, and AD muscles and selective SA activity ratio to other shoulder muscles.Results:Electromyography activity of the SA muscle and shoulder protraction strength were significantly lower in individuals with a WS compared with the non-WS group (P < .05). In contrast, PM muscle activity and the PM-to-SA, UT-to-SA, and AD-to-SA ratios were significantly greater in individuals with a WS than in individuals without winging (P < .05).Conclusions:Isometric shoulder protraction for measuring SA strength in individuals with a WS should focus on isolated muscle activity of the SA, and SA strengthening exercises are important for individuals with a WS.


Author(s):  
David Rodríguez-Ridao ◽  
José A. Antequera-Vique ◽  
Isabel Martín-Fuentes ◽  
José M. Muyor

The bench press exercise is one of the most used for training and for evaluating upper-body strength. The aim of the current study was to evaluate the electromyographic (EMG) activity levels of the pectoralis major (PM) in its three portions (upper portion, PMUP, middle portion, PMMP, and lower portion, PMLP), the anterior deltoid (AD), and the triceps brachii (TB) medial head during the bench press exercise at five bench angles (0°, 15°, 30°, 45°, and 60°). Thirty trained adults participated in the study. The EMG activity of the muscles was recorded at the aforementioned inclinations at 60% of one-repetition maximum (1RM). The results showed that the maximal EMG activity for PMUP occurred at a bench inclination of 30°. PMMP and PMLP showed higher EMG activity at a 0° bench inclination. AD had the highest EMG activity at 60°. TB showed similar EMG activities at all bench inclinations. In conclusion, the horizontal bench press produces similar electromyographic activities for the pectoralis major and the anterior deltoid. An inclination of 30° produces greater activation of the upper portion of the pectoralis major. Inclinations greater than 45° produce significantly higher activation of the anterior deltoid and decrease the muscular performance of the pectoralis major.


2019 ◽  
Vol 27 (1) ◽  
pp. 81-87
Author(s):  
Priscila Rodrigues Armijo ◽  
Chun-Kai Huang ◽  
Tyson Carlson ◽  
Dmitry Oleynikov ◽  
Ka-Chun Siu

Introduction. Our aim was to determine how self-reported and objectively measured fatigue of upper limb differ between laparoscopic and robotic surgical training environments. Methods. Surgeons at the 2016 SAGES Conference Learning Center and at our institution were enrolled. Two standardized surgical tasks (peg transfer [PT] and needle passing [NP]) were performed twice in each surgical skills practical environments: (1) laparoscopic training-box environment (Fundamentals of Laparoscopic Surgery [FLS]) and (2) Mimic dV-trainer (MIMIC). Muscle activation of upper trapezius (UT), anterior deltoid (AD), flexor carpi radialis, and extensor digitorum were recorded using surface electromyography (EMG; Trigno, Delsys, Inc, Natick, MA). Subjective fatigue was self-reported using Piper Fatigue Scale-12. Analysis was done using SPSS v25.0, α = .05. Results. Demographics were similar between FLS (N = 14) and MIMIC (N = 12). For PT, MIMIC had a significant increase in EMGRMS of UT ( P < .001) and AD ( P < .001). Conversely, FLS led to significant decreased muscle fatigue in UT ( P = .015). For NP, MIMIC had a significant increase in EMGRMS for UT ( P = .034) and AD ( P = .031), but FLS induced more muscle fatigue for AD ( P = .004). There was significant decrease in self-reported fatigue after performing FLS tasks ( P = .030) but not after MIMIC ( P = .663). Conclusion. Our results showed that practice with MIMIC resulted in greater activation of shoulder muscles, while FLS caused more significant muscle fatigue in the same muscles. This could be due to ergonomic disadvantages and nonoptimal ergonomic settings. Further studies are needed to understand the optimal ergonomics and its impact on fatigue and muscle activation during use of both the FLS and MIMIC training systems.


2020 ◽  
Vol 120 (11) ◽  
pp. 2517-2524
Author(s):  
Atle Hole Saeterbakken ◽  
Tom Erik J. Solstad ◽  
David G. Behm ◽  
Nicolay Stien ◽  
Matthew Peter Shaw ◽  
...  

Abstract Purpose To determine the effects of asymmetric loads on muscle activity with the bench press. Method Seventeen resistance-trained men performed one familiarization session including testing one repetition maximum (1RM) and three 5 repetition maximum (RM) lifts; using symmetric loads, 5% asymmetric loads, and 10% asymmetric loads. The asymmetric loading (i.e., reduced load on one side) was calculated as 5% and 10% of the subject`s 1RM load. In the experimental session, the three conditions of 5RM were conducted with electromyographic activity from the pectoralis major, triceps brachii, biceps brachii, anterior deltoid, posterior deltoid, and external oblique on both sides of the body. Results On the loaded side, asymmetric loads reduced triceps brachii activation compared to symmetric loads, whereas the other muscles demonstrated similar muscle activity between the three conditions. On the de-loaded side, 10% asymmetry in loading resulted in lower pectoralis major, anterior deltoid, and biceps brachii activation compared to 5% asymmetric and symmetric loading. On the de-loaded side, only pectoralis major demonstrated lower muscle activation than symmetric loads. Furthermore, asymmetric loads increased external oblique activation on both sides compared to symmetric loads. Conclusions Asymmetric bench press loads reduced chest and shoulder muscle activity on the de-loaded side while maintaining the muscle activity for the loaded side. The authors recommend resistance-trained participants struggling with strength imbalances between sides, or activities require asymmetric force generation (i.e., alpine skiing or martial arts), to implement asymmetric training as a supplement to the traditional resistance training.


Sign in / Sign up

Export Citation Format

Share Document