scholarly journals Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways

Author(s):  
Michela Langone ◽  
Daniele Basso

Hydrothermal carbonization (HTC) is an innovative process capable of converting wet biodegradable residues into value-added materials, such as hydrochar. HTC has been studied for decades, however, a lack of detailed information on the production and composition of the process water has been highlighted by several authors. In this paper the state of the art of the knowledge on this by-product is analyzed, with attention to HTC applied to municipal and agro-industrial anaerobic digestion digestate. The chemical and physical characteristics of the process water obtained at different HTC conditions are compared along with pH, color, organic matter, nutrients, heavy metals and toxic compounds. The possibility of recovering nutrients and other valorization pathways is analyzed and technical feasibility constraints are reported. Finally, the paper describes the main companies which are investing actively in proposing HTC technology towards improving an effective process water valorization.

2021 ◽  
Vol 1 ◽  
pp. 139
Author(s):  
Jae Wook Chung ◽  
Gabriel Gerner ◽  
Ekaterina Ovsyannikova ◽  
Alexander Treichler ◽  
Urs Baier ◽  
...  

Background: The provision of safe sanitation services is essential for human well-being and environmental integrity, but it is often lacking in less developed communities with insufficient financial and technical resources. Hydrothermal carbonization (HTC) has been suggested as an alternative sanitation technology, producing value-added products from faecal waste. We evaluated the HTC technology for raw human waste treatment in terms of resource recovery. In addition, we constructed and tested a low-cost HTC reactor for its technical feasibility. Methods: Raw human faeces were hydrothermally treated in a mild severity range (≤ 200 °C and ≤ 1 hr). The total energy recovery was analysed from the energy input, higher heating value (HHV) of hydrochar and biomethane potential of process water. The nutrient contents were recovered through struvite precipitation employing process water and acid leachate from hydrochar ash. A bench-scale low-cost reactor (BLR) was developed using widely available materials and tested for human faeces treatment. Results: The hydrochar had HHVs (23.2 - 25.2 MJ/kg) comparable to bituminous coal. The calorific value of hydrochar accounted for more than 90% of the total energy recovery. Around 78% of phosphorus in feedstock was retained in hydrochar ash, while 15% was in process water. 72% of the initial phosphorus can be recovered as struvite when deficient Mg and NH4 are supplemented. The experiments with BLR showed stable operation for faecal waste treatment with an energy efficiency comparable to a commercial reactor system. Conclusions: This research presents a proof of concept for the hydrothermal treatment of faecal waste as an alternative sanitation technology, by providing a quantitative evaluation of the resource recovery of energy and nutrients. The experiments with the BLR demonstrate the technical feasibility of the low-cost reactor and support its further development on a larger scale to reach practical implementation.


2021 ◽  
Author(s):  
Sourav Ghosh ◽  
Arindam Modak ◽  
Arnab Samanta ◽  
Kanika Kole ◽  
Subhra Jana

A comprehensive and critical in-depth discussion on the development and prospect of several advanced materials for conversion of CO2 to value added chemicals is provided, together with their current status, technical feasibility and future opportunities.


Author(s):  
Andrew N. Amenaghawon ◽  
Chinedu L. Anyalewechi ◽  
Charity O. Okieimen ◽  
Heri Septya Kusuma

Author(s):  
Jamila El-Gaayda ◽  
Fatima Ezzahra Titchou ◽  
Rachid Oukhrib ◽  
Pow-Seng Yap ◽  
Tianqi Liu ◽  
...  

2015 ◽  
Vol 10 (3) ◽  
pp. 546-555 ◽  
Author(s):  
M. Arcos-Hernández ◽  
L. Montaño-Herrera ◽  
O. Murugan Janarthanan ◽  
L. Quadri ◽  
S. Anterrieu ◽  
...  

Pilot and prototyping scale investigations were undertaken in order to evaluate the technical feasibility of producing value-added biopolymers (polyhydroxyalkanoates (PHAs)) as a by-product to essential services of wastewater treatment and environmental protection. A commonly asked question concerns PHA quality that may be expected from surplus biomass produced during biological treatment for water quality improvement. This paper summarizes the findings from a collection of investigations. Alongside the summarized technical efforts, attention has been paid to the social and economic networks. Such networks are needed in order to nurture circular economies that would drive value chains in renewable resource processing from contaminated water amelioration into renewable value-added bioplastic products and services. We find commercial promise in the polymer quality and in the process technical feasibility. The next challenge ahead does not reside so much any more in fundamental research and development of the technology but, rather, in social-economic steps that will be necessary to realize first demonstration scale polymer production activities. It is a material supply that will stimulate niche business opportunities that can grow and stimulate technology pull with benefit of real life material product market combinations.


2021 ◽  
Vol 5 ◽  
Author(s):  
Yihuai Hu ◽  
Olha Khomenko ◽  
Wenxuan Shi ◽  
Ángel Velasco-Sánchez ◽  
S. M. Ashekuzzaman ◽  
...  

Worldwide dairy processing plants produce high volumes of dairy processing sludge (DPS), which can be converted into secondary derivatives such as struvite, biochar and ash (collectively termed STRUBIAS). All of these products have high fertilizer equivalent values (FEV), but future certification as phosphorus (P)-fertilizers in the European Union will mean they need to adhere to new technical regulations for fertilizing materials i.e., content limits pertaining to heavy metals (Cd, Cu, Hg, Ni, Pb, and Zn), synthetic organic compounds and pathogens. This systematic review presents the current state of knowledge about these bio-based fertilizers and identifies knowledge gaps. In addition, a review and calculation of greenhouse gas emissions from a range of concept dairy sludge management and production systems for STRUBIAS products [i.e., biochar from pyrolysis and hydrochar from hydrothermal carbonization (HTC)] is presented. Results from the initial review showed that DPS composition depends on product type and treatment processes at a given processing plant, which leads to varied nutrient, heavy metal and carbon contents. These products are all typically high in nutrients and carbon, but low in heavy metals. Further work needs to concentrate on examining their pathogenic microorganism and emerging contaminant contents, in addition to conducting an economic assessment of production and end-user costs related to chemical fertilizer equivalents. With respect to STRUBIAS products, contaminants not present in the raw DPS may need further treatment before being land applied in agriculture e.g., heated producing ashes, hydrochar, or biochar. An examination of these products from an environmental perspective shows that their water quality footprint could be minimized using application rates based on P incorporation of these products into nutrient management planning and application by incorporation into the soil. Results from the concept system showed that elimination of methane emissions was possible, along with a reduction in nitrous oxide. Less carbon (C) is transferred to agricultural fields where DPS is processed into biochar and hydrochar, but due to high recalcitrance, the C in this form is retained much longer in the soil, and therefore STRUBIAS products represent a more stable and long-term option to increase soil C stocks and sequestration.


Sign in / Sign up

Export Citation Format

Share Document